/* $Id$ */
/*
* Copyright (c) 2011 Kristaps Dzonsons <kristaps@bsd.lv>
* Copyright (c) 2011 Ingo Schwarze <schwarze@openbsd.org>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#include <assert.h>
#include <fcntl.h>
#include <regex.h>
#include <stdarg.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#if defined(__linux__)
# include <endian.h>
# include <db_185.h>
#elif defined(__APPLE__)
# include <libkern/OSByteOrder.h>
# include <db.h>
#else
# include <db.h>
#endif
#include "mandocdb.h"
#include "apropos_db.h"
#include "mandoc.h"
struct rec {
struct res res; /* resulting record info */
/*
* Maintain a binary tree for checking the uniqueness of `rec'
* when adding elements to the results array.
* Since the results array is dynamic, use offset in the array
* instead of a pointer to the structure.
*/
int lhs;
int rhs;
int matched; /* expression is true */
int *matches; /* partial truth evaluations */
};
struct expr {
int regex; /* is regex? */
int index; /* index in match array */
uint64_t mask; /* type-mask */
int and; /* is rhs of logical AND? */
char *v; /* search value */
regex_t re; /* compiled re, if regex */
struct expr *next; /* next in sequence */
struct expr *subexpr;
};
struct type {
uint64_t mask;
const char *name;
};
struct rectree {
struct rec *node; /* record array for dir tree */
int len; /* length of record array */
};
static const struct type types[] = {
{ TYPE_An, "An" },
{ TYPE_Ar, "Ar" },
{ TYPE_At, "At" },
{ TYPE_Bsx, "Bsx" },
{ TYPE_Bx, "Bx" },
{ TYPE_Cd, "Cd" },
{ TYPE_Cm, "Cm" },
{ TYPE_Dv, "Dv" },
{ TYPE_Dx, "Dx" },
{ TYPE_Em, "Em" },
{ TYPE_Er, "Er" },
{ TYPE_Ev, "Ev" },
{ TYPE_Fa, "Fa" },
{ TYPE_Fl, "Fl" },
{ TYPE_Fn, "Fn" },
{ TYPE_Fn, "Fo" },
{ TYPE_Ft, "Ft" },
{ TYPE_Fx, "Fx" },
{ TYPE_Ic, "Ic" },
{ TYPE_In, "In" },
{ TYPE_Lb, "Lb" },
{ TYPE_Li, "Li" },
{ TYPE_Lk, "Lk" },
{ TYPE_Ms, "Ms" },
{ TYPE_Mt, "Mt" },
{ TYPE_Nd, "Nd" },
{ TYPE_Nm, "Nm" },
{ TYPE_Nx, "Nx" },
{ TYPE_Ox, "Ox" },
{ TYPE_Pa, "Pa" },
{ TYPE_Rs, "Rs" },
{ TYPE_Sh, "Sh" },
{ TYPE_Ss, "Ss" },
{ TYPE_St, "St" },
{ TYPE_Sy, "Sy" },
{ TYPE_Tn, "Tn" },
{ TYPE_Va, "Va" },
{ TYPE_Va, "Vt" },
{ TYPE_Xr, "Xr" },
{ UINT64_MAX, "any" },
{ 0, NULL }
};
static DB *btree_open(void);
static int btree_read(const DBT *, const DBT *,
const struct mchars *,
struct db_val *, char **);
static int expreval(const struct expr *, int *);
static void exprexec(const struct expr *,
const char *, uint64_t, struct rec *);
static int exprmark(const struct expr *,
const char *, uint64_t, int *);
static struct expr *exprexpr(int, char *[], int *, int *, size_t *);
static struct expr *exprterm(char *, int);
static DB *index_open(void);
static int index_read(const DBT *, const DBT *, int,
const struct mchars *, struct rec *);
static void norm_string(const char *,
const struct mchars *, char **);
static size_t norm_utf8(unsigned int, char[7]);
static void recfree(struct rec *);
static int single_search(struct rectree *, const struct opts *,
const struct expr *, size_t terms,
struct mchars *, int);
/*
* Open the keyword mandoc-db database.
*/
static DB *
btree_open(void)
{
BTREEINFO info;
DB *db;
memset(&info, 0, sizeof(BTREEINFO));
info.flags = R_DUP;
db = dbopen(MANDOC_DB, O_RDONLY, 0, DB_BTREE, &info);
if (NULL != db)
return(db);
return(NULL);
}
/*
* Read a keyword from the database and normalise it.
* Return 0 if the database is insane, else 1.
*/
static int
btree_read(const DBT *k, const DBT *v,
const struct mchars *mc,
struct db_val *dbv, char **buf)
{
const struct db_val *vp;
/* Are our sizes sane? */
if (k->size < 2 || sizeof(struct db_val) != v->size)
return(0);
/* Is our string nil-terminated? */
if ('\0' != ((const char *)k->data)[(int)k->size - 1])
return(0);
vp = v->data;
norm_string((const char *)k->data, mc, buf);
dbv->rec = betoh32(vp->rec);
dbv->mask = betoh64(vp->mask);
return(1);
}
/*
* Take a Unicode codepoint and produce its UTF-8 encoding.
* This isn't the best way to do this, but it works.
* The magic numbers are from the UTF-8 packaging.
* They're not as scary as they seem: read the UTF-8 spec for details.
*/
static size_t
norm_utf8(unsigned int cp, char out[7])
{
size_t rc;
rc = 0;
if (cp <= 0x0000007F) {
rc = 1;
out[0] = (char)cp;
} else if (cp <= 0x000007FF) {
rc = 2;
out[0] = (cp >> 6 & 31) | 192;
out[1] = (cp & 63) | 128;
} else if (cp <= 0x0000FFFF) {
rc = 3;
out[0] = (cp >> 12 & 15) | 224;
out[1] = (cp >> 6 & 63) | 128;
out[2] = (cp & 63) | 128;
} else if (cp <= 0x001FFFFF) {
rc = 4;
out[0] = (cp >> 18 & 7) | 240;
out[1] = (cp >> 12 & 63) | 128;
out[2] = (cp >> 6 & 63) | 128;
out[3] = (cp & 63) | 128;
} else if (cp <= 0x03FFFFFF) {
rc = 5;
out[0] = (cp >> 24 & 3) | 248;
out[1] = (cp >> 18 & 63) | 128;
out[2] = (cp >> 12 & 63) | 128;
out[3] = (cp >> 6 & 63) | 128;
out[4] = (cp & 63) | 128;
} else if (cp <= 0x7FFFFFFF) {
rc = 6;
out[0] = (cp >> 30 & 1) | 252;
out[1] = (cp >> 24 & 63) | 128;
out[2] = (cp >> 18 & 63) | 128;
out[3] = (cp >> 12 & 63) | 128;
out[4] = (cp >> 6 & 63) | 128;
out[5] = (cp & 63) | 128;
} else
return(0);
out[rc] = '\0';
return(rc);
}
/*
* Normalise strings from the index and database.
* These strings are escaped as defined by mandoc_char(7) along with
* other goop in mandoc.h (e.g., soft hyphens).
* This function normalises these into a nice UTF-8 string.
* Returns 0 if the database is fucked.
*/
static void
norm_string(const char *val, const struct mchars *mc, char **buf)
{
size_t sz, bsz;
char utfbuf[7];
const char *seq, *cpp;
int len, u, pos;
enum mandoc_esc esc;
static const char res[] = { '\\', '\t',
ASCII_NBRSP, ASCII_HYPH, '\0' };
/* Pre-allocate by the length of the input */
bsz = strlen(val) + 1;
*buf = mandoc_realloc(*buf, bsz);
pos = 0;
while ('\0' != *val) {
/*
* Halt on the first escape sequence.
* This also halts on the end of string, in which case
* we just copy, fallthrough, and exit the loop.
*/
if ((sz = strcspn(val, res)) > 0) {
memcpy(&(*buf)[pos], val, sz);
pos += (int)sz;
val += (int)sz;
}
if (ASCII_HYPH == *val) {
(*buf)[pos++] = '-';
val++;
continue;
} else if ('\t' == *val || ASCII_NBRSP == *val) {
(*buf)[pos++] = ' ';
val++;
continue;
} else if ('\\' != *val)
break;
/* Read past the slash. */
val++;
u = 0;
/*
* Parse the escape sequence and see if it's a
* predefined character or special character.
*/
esc = mandoc_escape(&val, &seq, &len);
if (ESCAPE_ERROR == esc)
break;
/*
* XXX - this just does UTF-8, but we need to know
* beforehand whether we should do text substitution.
*/
switch (esc) {
case (ESCAPE_SPECIAL):
if (0 != (u = mchars_spec2cp(mc, seq, len)))
break;
/* FALLTHROUGH */
default:
continue;
}
/*
* If we have a Unicode codepoint, try to convert that
* to a UTF-8 byte string.
*/
cpp = utfbuf;
if (0 == (sz = norm_utf8(u, utfbuf)))
continue;
/* Copy the rendered glyph into the stream. */
sz = strlen(cpp);
bsz += sz;
*buf = mandoc_realloc(*buf, bsz);
memcpy(&(*buf)[pos], cpp, sz);
pos += (int)sz;
}
(*buf)[pos] = '\0';
}
/*
* Open the filename-index mandoc-db database.
* Returns NULL if opening failed.
*/
static DB *
index_open(void)
{
DB *db;
db = dbopen(MANDOC_IDX, O_RDONLY, 0, DB_RECNO, NULL);
if (NULL != db)
return(db);
return(NULL);
}
/*
* Safely unpack from an index file record into the structure.
* Returns 1 if an entry was unpacked, 0 if the database is insane.
*/
static int
index_read(const DBT *key, const DBT *val, int index,
const struct mchars *mc, struct rec *rec)
{
size_t left;
char *np, *cp;
char type;
#define INDEX_BREAD(_dst) \
do { \
if (NULL == (np = memchr(cp, '\0', left))) \
return(0); \
norm_string(cp, mc, &(_dst)); \
left -= (np - cp) + 1; \
cp = np + 1; \
} while (/* CONSTCOND */ 0)
if (0 == (left = val->size))
return(0);
cp = val->data;
rec->res.rec = *(recno_t *)key->data;
rec->res.volume = index;
if ('d' == (type = *cp++))
rec->res.type = RESTYPE_MDOC;
else if ('a' == type)
rec->res.type = RESTYPE_MAN;
else if ('c' == type)
rec->res.type = RESTYPE_CAT;
else
return(0);
left--;
INDEX_BREAD(rec->res.file);
INDEX_BREAD(rec->res.cat);
INDEX_BREAD(rec->res.title);
INDEX_BREAD(rec->res.arch);
INDEX_BREAD(rec->res.desc);
return(1);
}
/*
* Search mandocdb databases in paths for expression "expr".
* Filter out by "opts".
* Call "res" with the results, which may be zero.
* Return 0 if there was a database error, else return 1.
*/
int
apropos_search(int pathsz, char **paths, const struct opts *opts,
const struct expr *expr, size_t terms, void *arg,
void (*res)(struct res *, size_t, void *))
{
struct rectree tree;
struct mchars *mc;
struct res *ress;
int i, mlen, rc;
memset(&tree, 0, sizeof(struct rectree));
rc = 0;
mc = mchars_alloc();
/*
* Main loop. Change into the directory containing manpage
* databases. Run our expession over each database in the set.
*/
for (i = 0; i < pathsz; i++) {
if (chdir(paths[i]))
continue;
if ( ! single_search(&tree, opts, expr, terms, mc, i))
goto out;
}
/*
* Count matching files, transfer to a "clean" array, then feed
* them to the output handler.
*/
for (mlen = i = 0; i < tree.len; i++)
if (tree.node[i].matched)
mlen++;
ress = mandoc_malloc(mlen * sizeof(struct res));
for (mlen = i = 0; i < tree.len; i++)
if (tree.node[i].matched)
memcpy(&ress[mlen++], &tree.node[i].res,
sizeof(struct res));
(*res)(ress, mlen, arg);
free(ress);
rc = 1;
out:
for (i = 0; i < tree.len; i++)
recfree(&tree.node[i]);
free(tree.node);
mchars_free(mc);
return(rc);
}
static int
single_search(struct rectree *tree, const struct opts *opts,
const struct expr *expr, size_t terms,
struct mchars *mc, int vol)
{
int root, leaf, ch;
DBT key, val;
DB *btree, *idx;
char *buf;
struct rec *rs;
struct rec r;
struct db_val vb;
root = -1;
leaf = -1;
btree = NULL;
idx = NULL;
buf = NULL;
rs = tree->node;
memset(&r, 0, sizeof(struct rec));
if (NULL == (btree = btree_open()))
return(1);
if (NULL == (idx = index_open())) {
(*btree->close)(btree);
return(1);
}
while (0 == (ch = (*btree->seq)(btree, &key, &val, R_NEXT))) {
if ( ! btree_read(&key, &val, mc, &vb, &buf))
break;
/*
* See if this keyword record matches any of the
* expressions we have stored.
*/
if ( ! exprmark(expr, buf, vb.mask, NULL))
continue;
/*
* O(log n) scan for prior records. Since a record
* number is unbounded, this has decent performance over
* a complex hash function.
*/
for (leaf = root; leaf >= 0; )
if (vb.rec > rs[leaf].res.rec &&
rs[leaf].rhs >= 0)
leaf = rs[leaf].rhs;
else if (vb.rec < rs[leaf].res.rec &&
rs[leaf].lhs >= 0)
leaf = rs[leaf].lhs;
else
break;
/*
* If we find a record, see if it has already evaluated
* to true. If it has, great, just keep going. If not,
* try to evaluate it now and continue anyway.
*/
if (leaf >= 0 && rs[leaf].res.rec == vb.rec) {
if (0 == rs[leaf].matched)
exprexec(expr, buf, vb.mask, &rs[leaf]);
continue;
}
/*
* We have a new file to examine.
* Extract the manpage's metadata from the index
* database, then begin partial evaluation.
*/
key.data = &vb.rec;
key.size = sizeof(recno_t);
if (0 != (*idx->get)(idx, &key, &val, 0))
break;
r.lhs = r.rhs = -1;
if ( ! index_read(&key, &val, vol, mc, &r))
break;
/* XXX: this should be elsewhere, I guess? */
if (opts->cat && strcasecmp(opts->cat, r.res.cat))
continue;
if (opts->arch && *r.res.arch)
if (strcasecmp(opts->arch, r.res.arch))
continue;
tree->node = rs = mandoc_realloc
(rs, (tree->len + 1) * sizeof(struct rec));
memcpy(&rs[tree->len], &r, sizeof(struct rec));
memset(&r, 0, sizeof(struct rec));
rs[tree->len].matches =
mandoc_calloc(terms, sizeof(int));
exprexec(expr, buf, vb.mask, &rs[tree->len]);
/* Append to our tree. */
if (leaf >= 0) {
if (vb.rec > rs[leaf].res.rec)
rs[leaf].rhs = tree->len;
else
rs[leaf].lhs = tree->len;
} else
root = tree->len;
tree->len++;
}
(*btree->close)(btree);
(*idx->close)(idx);
free(buf);
recfree(&r);
return(1 == ch);
}
static void
recfree(struct rec *rec)
{
free(rec->res.file);
free(rec->res.cat);
free(rec->res.title);
free(rec->res.arch);
free(rec->res.desc);
free(rec->matches);
}
/*
* Compile a list of straight-up terms.
* The arguments are re-written into ~[[:<:]]term[[:>:]], or "term"
* surrounded by word boundaries, then pumped through exprterm().
* Terms are case-insensitive.
* This emulates whatis(1) behaviour.
*/
struct expr *
termcomp(int argc, char *argv[], size_t *tt)
{
char *buf;
int pos;
struct expr *e, *next;
size_t sz;
buf = NULL;
e = NULL;
*tt = 0;
for (pos = argc - 1; pos >= 0; pos--) {
sz = strlen(argv[pos]) + 18;
buf = mandoc_realloc(buf, sz);
strlcpy(buf, "Nm~[[:<:]]", sz);
strlcat(buf, argv[pos], sz);
strlcat(buf, "[[:>:]]", sz);
if (NULL == (next = exprterm(buf, 0))) {
free(buf);
exprfree(e);
return(NULL);
}
next->next = e;
e = next;
(*tt)++;
}
free(buf);
return(e);
}
/*
* Compile a sequence of logical expressions.
* See apropos.1 for a grammar of this sequence.
*/
struct expr *
exprcomp(int argc, char *argv[], size_t *tt)
{
int pos, lvl;
struct expr *e;
pos = lvl = 0;
*tt = 0;
e = exprexpr(argc, argv, &pos, &lvl, tt);
if (0 == lvl && pos >= argc)
return(e);
exprfree(e);
return(NULL);
}
/*
* Compile an array of tokens into an expression.
* An informal expression grammar is defined in apropos(1).
* Return NULL if we fail doing so. All memory will be cleaned up.
* Return the root of the expression sequence if alright.
*/
static struct expr *
exprexpr(int argc, char *argv[], int *pos, int *lvl, size_t *tt)
{
struct expr *e, *first, *next;
int log;
first = next = NULL;
for ( ; *pos < argc; (*pos)++) {
e = next;
/*
* Close out a subexpression.
*/
if (NULL != e && 0 == strcmp(")", argv[*pos])) {
if (--(*lvl) < 0)
goto err;
break;
}
/*
* Small note: if we're just starting, don't let "-a"
* and "-o" be considered logical operators: they're
* just tokens unless pairwise joining, in which case we
* record their existence (or assume "OR").
*/
log = 0;
if (NULL != e && 0 == strcmp("-a", argv[*pos]))
log = 1;
else if (NULL != e && 0 == strcmp("-o", argv[*pos]))
log = 2;
if (log > 0 && ++(*pos) >= argc)
goto err;
/*
* Now we parse the term part. This can begin with
* "-i", in which case the expression is case
* insensitive.
*/
if (0 == strcmp("(", argv[*pos])) {
++(*pos);
++(*lvl);
next = mandoc_calloc(1, sizeof(struct expr));
next->subexpr = exprexpr(argc, argv, pos, lvl, tt);
if (NULL == next->subexpr) {
free(next);
next = NULL;
}
} else if (0 == strcmp("-i", argv[*pos])) {
if (++(*pos) >= argc)
goto err;
next = exprterm(argv[*pos], 0);
} else
next = exprterm(argv[*pos], 1);
if (NULL == next)
goto err;
next->and = log == 1;
next->index = (int)(*tt)++;
/* Append to our chain of expressions. */
if (NULL == first) {
assert(NULL == e);
first = next;
} else {
assert(NULL != e);
e->next = next;
}
}
return(first);
err:
exprfree(first);
return(NULL);
}
/*
* Parse a terminal expression with the grammar as defined in
* apropos(1).
* Return NULL if we fail the parse.
*/
static struct expr *
exprterm(char *buf, int cs)
{
struct expr e;
struct expr *p;
char *key;
int i;
memset(&e, 0, sizeof(struct expr));
/* Choose regex or substring match. */
if (NULL == (e.v = strpbrk(buf, "=~"))) {
e.regex = 0;
e.v = buf;
} else {
e.regex = '~' == *e.v;
*e.v++ = '\0';
}
/* Determine the record types to search for. */
e.mask = 0;
if (buf < e.v) {
while (NULL != (key = strsep(&buf, ","))) {
i = 0;
while (types[i].mask &&
strcmp(types[i].name, key))
i++;
e.mask |= types[i].mask;
}
}
if (0 == e.mask)
e.mask = TYPE_Nm | TYPE_Nd;
if (e.regex) {
i = REG_EXTENDED | REG_NOSUB | (cs ? 0 : REG_ICASE);
if (regcomp(&e.re, e.v, i))
return(NULL);
}
e.v = mandoc_strdup(e.v);
p = mandoc_calloc(1, sizeof(struct expr));
memcpy(p, &e, sizeof(struct expr));
return(p);
}
void
exprfree(struct expr *p)
{
struct expr *pp;
while (NULL != p) {
if (p->subexpr)
exprfree(p->subexpr);
if (p->regex)
regfree(&p->re);
free(p->v);
pp = p->next;
free(p);
p = pp;
}
}
static int
exprmark(const struct expr *p, const char *cp,
uint64_t mask, int *ms)
{
for ( ; p; p = p->next) {
if (p->subexpr) {
if (exprmark(p->subexpr, cp, mask, ms))
return(1);
continue;
} else if ( ! (mask & p->mask))
continue;
if (p->regex) {
if (regexec(&p->re, cp, 0, NULL, 0))
continue;
} else if (NULL == strcasestr(cp, p->v))
continue;
if (NULL == ms)
return(1);
else
ms[p->index] = 1;
}
return(0);
}
static int
expreval(const struct expr *p, int *ms)
{
int match;
/*
* AND has precedence over OR. Analysis is left-right, though
* it doesn't matter because there are no side-effects.
* Thus, step through pairwise ANDs and accumulate their Boolean
* evaluation. If we encounter a single true AND collection or
* standalone term, the whole expression is true (by definition
* of OR).
*/
for (match = 0; p && ! match; p = p->next) {
/* Evaluate a subexpression, if applicable. */
if (p->subexpr && ! ms[p->index])
ms[p->index] = expreval(p->subexpr, ms);
match = ms[p->index];
for ( ; p->next && p->next->and; p = p->next) {
/* Evaluate a subexpression, if applicable. */
if (p->next->subexpr && ! ms[p->next->index])
ms[p->next->index] =
expreval(p->next->subexpr, ms);
match = match && ms[p->next->index];
}
}
return(match);
}
/*
* First, update the array of terms for which this expression evaluates
* to true.
* Second, logically evaluate all terms over the updated array of truth
* values.
* If this evaluates to true, mark the expression as satisfied.
*/
static void
exprexec(const struct expr *e, const char *cp,
uint64_t mask, struct rec *r)
{
assert(0 == r->matched);
exprmark(e, cp, mask, r->matches);
r->matched = expreval(e, r->matches);
}