aboutsummaryrefslogblamecommitdiffstats
path: root/z15.c
blob: 46c7c66328c2098fd66ce7bba893ab79b7003a1a (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482

                                                                               
                                                                               
                                                                               





























































































































































































































































































































































































































































































                                                                                     

                      



































































































































































































































































































































































                                                                                     
/*@z15.c:Size Constraints:MinConstraint(), EnlargeToConstraint()@*************/
/*                                                                           */
/*  THE LOUT DOCUMENT FORMATTING SYSTEM (VERSION 3.22)                       */
/*  COPYRIGHT (C) 1991, 2000 Jeffrey H. Kingston                             */
/*                                                                           */
/*  Jeffrey H. Kingston (jeff@cs.usyd.edu.au)                                */
/*  Basser Department of Computer Science                                    */
/*  The University of Sydney 2006                                            */
/*  AUSTRALIA                                                                */
/*                                                                           */
/*  This program is free software; you can redistribute it and/or modify     */
/*  it under the terms of the GNU General Public License as published by     */
/*  the Free Software Foundation; either Version 2, or (at your option)      */
/*  any later version.                                                       */
/*                                                                           */
/*  This program is distributed in the hope that it will be useful,          */
/*  but WITHOUT ANY WARRANTY; without even the implied warranty of           */
/*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the            */
/*  GNU General Public License for more details.                             */
/*                                                                           */
/*  You should have received a copy of the GNU General Public License        */
/*  along with this program; if not, write to the Free Software              */
/*  Foundation, Inc., 59 Temple Place, Suite 330, Boston MA 02111-1307 USA   */
/*                                                                           */
/*  FILE:         z15.c                                                      */
/*  MODULE:       Size Constraints                                           */
/*  EXTERNS:      MinConstraint(), EnlargeToConstraint(),                    */
/*                ReflectConstraint(), SemiRotateConstraint(),               */
/*                RotateConstraint(), InvScaleConstraint(), Constrained(),   */
/*                EchoConstraint(), DebugConstrained()                       */
/*                                                                           */
/*****************************************************************************/
#include <math.h>
#ifndef M_PI
#define M_PI       3.1415926535897931160E0
#endif
#include "externs.h"


/*****************************************************************************/
/*                                                                           */
/*  MinConstraint(xc, yc)                                                    */
/*                                                                           */
/*  Replace *xc by the minimum of the two constraints *xc and *yc.           */
/*                                                                           */
/*****************************************************************************/

void MinConstraint(CONSTRAINT *xc, CONSTRAINT *yc)
{ bc(*xc)  = find_min(bc(*xc),  bc(*yc));
  bfc(*xc) = find_min(bfc(*xc), bfc(*yc));
  fc(*xc)  = find_min(fc(*xc),  fc(*yc));
} /* end MinConstraint */


/*****************************************************************************/
/*                                                                           */
/*  SetSizeToMaxForwardConstraint(b, f, c)                                   */
/*                                                                           */
/*  Set *b, *f to their largest possible value within constraint *c, such    */
/*  that *f is as large as possible.                                         */
/*                                                                           */
/*****************************************************************************/

void SetSizeToMaxForwardConstraint(FULL_LENGTH *b, FULL_LENGTH *f, CONSTRAINT *c)
{
  *f = find_min(bfc(*c), fc(*c));
  *b = find_min(bc(*c), bfc(*c) - *f);
} /* end EnlargeToConstraint */


/*****************************************************************************/
/*                                                                           */
/*  EnlargeToConstraint(b, f, c)                                             */
/*                                                                           */
/*  Enlarge *b,*f to its largest possible value within constraint *c.        */
/*                                                                           */
/*****************************************************************************/

void EnlargeToConstraint(FULL_LENGTH *b, FULL_LENGTH *f, CONSTRAINT *c)
{
  *f = find_min(bfc(*c) - *b, fc(*c));
} /* end EnlargeToConstraint */


/*****************************************************************************/
/*                                                                           */
/*  ReflectConstraint(xc, yc)                                                */
/*                                                                           */
/*  Set xc to the constraint which is yc with its back and forward reversed. */
/*                                                                           */
/*****************************************************************************/

#define ReflectConstraint(xc, yc)  SetConstraint(xc, fc(yc), bfc(yc), bc(yc))


/*@::ScaleToConstraint(), InvScaleConstraint(), etc@**************************/
/*                                                                           */
/*  int ScaleToConstraint(b, f, c)                                           */
/*                                                                           */
/*  Return the scale factor needed to scale object of size b, f down so it   */
/*  has a size which fits tightly into constraint c.                         */
/*                                                                           */
/*****************************************************************************/

int ScaleToConstraint(FULL_LENGTH b, FULL_LENGTH f, CONSTRAINT *c)
{ float scale_factor;  int res;
  debug3(DSC, DD, "ScaleToConstraint(%s, %s, %s)", EchoLength(b),
    EchoLength(f), EchoConstraint(c));
  scale_factor = 1.0;
  if( b     > 0 )  scale_factor = find_min(scale_factor, (float) bc(*c)/b       );
  if( b + f > 0 )  scale_factor = find_min(scale_factor, (float) bfc(*c)/(b + f));
  if(     f > 0 )  scale_factor = find_min(scale_factor, (float) fc(*c)/f       );
  res = scale_factor * SF;
  debug2(DSC, DD, "ScaleToConstraint returning %.2f (%d)", scale_factor, res);
  return res;
} /* end ScaleToConstraint */


/*****************************************************************************/
/*                                                                           */
/*  InvScaleConstraint(yc, sf, xc)                                           */
/*                                                                           */
/*  Scale constraint xc to the inverse of the scale factor sf.               */
/*                                                                           */
/*****************************************************************************/

void InvScaleConstraint(CONSTRAINT *yc, FULL_LENGTH sf, CONSTRAINT *xc)
{
#if DEBUG_ON
  char buff[10];
#endif
  ifdebug(DSC, DD, sprintf(buff, "%.3f", (float) sf / SF));
  debug2(DSC, DD, "InvScaleConstraint(yc, %s, %s)", buff, EchoConstraint(xc));
  assert( sf > 0, "InvScaleConstraint: sf <= 0!" );
  bc(*yc)  = bc(*xc)  == MAX_FULL_LENGTH ? MAX_FULL_LENGTH :
    find_min(MAX_FULL_LENGTH, bc(*xc) * SF / sf);
  bfc(*yc) = bfc(*xc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH :
    find_min(MAX_FULL_LENGTH, bfc(*xc)* SF / sf);
  fc(*yc)  = fc(*xc)  == MAX_FULL_LENGTH ? MAX_FULL_LENGTH :
    find_min(MAX_FULL_LENGTH, fc(*xc) * SF / sf);
  debug1(DSC, DD, "InvScaleConstraint returning %s", EchoConstraint(yc));
} /* end InvScaleConstraint */


/*****************************************************************************/
/*                                                                           */
/*  static SemiRotateConstraint(xc, u, v, angle, yc)                         */
/*                                                                           */
/*  Used by RotateConstraint to calculate one rotated constraint.            */
/*                                                                           */
/*****************************************************************************/

static void SemiRotateConstraint(CONSTRAINT *xc, FULL_LENGTH u, FULL_LENGTH v,
float angle, CONSTRAINT *yc)
{ float cs, sn;
#if DEBUG_ON
  char buff[20];
#endif
  ifdebug(DSC, DD, sprintf(buff, "%.1f", angle * 360.0 / (2 * M_PI)));
  debug4(DSC, DD, "SemiRotateConstraint(xc, %s, %s, %sd, %s",
    EchoLength(u), EchoLength(v), buff, EchoConstraint(yc));
  cs = cos(angle);  sn = sin(angle);
  if( fabs(cs) < 1e-6 )
    SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
  else
    SetConstraint(*xc,
      find_min(MAX_FULL_LENGTH, (bc(*yc) - u * sn) / cs),
      find_min(MAX_FULL_LENGTH, (bfc(*yc) - u * sn - v * sn) / cs),
      find_min(MAX_FULL_LENGTH, (fc(*yc) - v * sn) / cs ));
  debug1(DSC, DD, "SemiRotateConstraint returning %s", EchoConstraint(xc));
} /* end SemiRotateConstraint */


/*@::RotateConstraint()@******************************************************/
/*                                                                           */
/*  RotateConstraint(c, y, angle, hc, vc, dim)                               */
/*                                                                           */
/*  Take the object angle @Rotate y, which is supposed to be constrained     */
/*  horizontally by hc and vertically by vc, and determine a constraint      */
/*  (either horizontal or vertical, depending on dim) for y.                 */
/*                                                                           */
/*  The constraint returned is a trigonometric function of all these         */
/*  parameters, including the present size of y in dimension 1-dim.          */
/*                                                                           */
/*****************************************************************************/

void RotateConstraint(CONSTRAINT *c, OBJECT y, FULL_LENGTH angle,
CONSTRAINT *hc, CONSTRAINT *vc, int dim)
{ CONSTRAINT c1, c2, c3, dc;  float theta, psi;
#if DEBUG_ON
  char buff[20];
#endif
  ifdebug(DSC, DD, sprintf(buff, "%.1f", (float) angle / DG ));
  debug4(DSC, DD, "RotateConstraint(c, y, %sd, %s, %s, %s)",
	buff, EchoConstraint(hc), EchoConstraint(vc), dimen(dim));

  /* work out angle in radians between 0 and 2*PI */
  theta = (float) angle * 2 * M_PI / (float) (DG * 360);
  while( theta < 0 ) theta += 2 * M_PI;
  while( theta >= 2 * M_PI ) theta -= 2 * M_PI;
  assert( 0 <= theta && theta <= 2 * M_PI, "RotateConstraint: theta!" );

  /* determine theta, c1, and c2 depending on which quadrant we are in */
  if( theta <= M_PI / 2.0 )   /* first quadrant */
  { theta = theta;
    CopyConstraint(c1, *hc);
    CopyConstraint(c2, *vc);
  }
  else if ( theta <= M_PI )   /* second quadrant */
  { theta -= M_PI / 2.0;
    ReflectConstraint(c1, *vc);
    CopyConstraint(c2, *hc);
  }
  else if ( theta <= 3.0 * M_PI / 2.0 )   /* third quadrant */
  { theta -= M_PI;
    ReflectConstraint(c1, *hc);
    ReflectConstraint(c2, *vc);
  }
  else /* fourth quadrant */
  { theta -= 3.0 * M_PI / 2.0;
    CopyConstraint(c1, *vc);
    ReflectConstraint(c2, *hc);
  }
  psi = M_PI / 2.0 - theta;
  debug2(DSC, DD, "  c1: %s;  c2: %s", EchoConstraint(&c1), EchoConstraint(&c2));

  /* return the minimum of the two constraints, rotated */
  if( dim == COLM )
  { SemiRotateConstraint(c, back(y, ROWM), fwd(y, ROWM), theta, &c1);
    ReflectConstraint(c3, c2);
    SemiRotateConstraint(&dc, fwd(y, ROWM), back(y, ROWM), psi, &c3);
    MinConstraint(c, &dc);
  }
  else
  { SemiRotateConstraint(c, back(y, COLM), fwd(y, COLM), psi, &c1);
    SemiRotateConstraint(&dc, fwd(y, COLM), back(y, COLM), theta, &c2);
    MinConstraint(c, &dc);
  }

  debug1(DSC, DD, "RotateConstraint returning %s", EchoConstraint(c));
} /* end RotateConstraint */

/*@::InsertScale()@***********************************************************/
/*                                                                           */
/*  BOOLEAN InsertScale(x, c)                                                */
/*                                                                           */
/*  Insert a @Scale object above x so that x is scaled horizontally to fit   */
/*  constraint c.  If this is not possible, owing to the necessary scale     */
/*  factor being too small, then don't do it; return FALSE instead.          */
/*                                                                           */
/*****************************************************************************/

BOOLEAN InsertScale(OBJECT x, CONSTRAINT *c)
{ int scale_factor; OBJECT prnt;
  scale_factor = ScaleToConstraint(back(x, COLM), fwd(x, COLM), c);
  if( scale_factor >= 0.2 * SF )
  {
    New(prnt, SCALE);
    underline(prnt) = underline(x);
    FposCopy(fpos(prnt), fpos(x));

    /* set horizontal size and scale factor */
    bc(constraint(prnt)) = scale_factor;
    back(prnt, COLM) = ( back(x, COLM) * scale_factor ) / SF;

    /* *** slightly too small?
    fwd(prnt,  COLM) = ( fwd(x,  COLM) * scale_factor ) / SF;
    *** */
    fwd(prnt,  COLM) = find_min(bfc(*c) - back(prnt, COLM), fc(*c));

    /* set vertical size and scale factor */
    fc(constraint(prnt)) = 1 * SF;
    back(prnt, ROWM) = back(x, ROWM);
    fwd(prnt, ROWM) = fwd(x, ROWM);

    /* link prnt above x and return */
    ReplaceNode(prnt, x);
    Link(prnt, x);
    return TRUE;
  }
  else return FALSE;
} /* end InsertScale */


/*@::CatConstrained()@********************************************************/
/*                                                                           */
/*  static CatConstrained(x, xc, ratm, y, dim, OBJECT *why)                  */
/*                                                                           */
/*  Calculate the size constraint of object x, as for Constrained below.     */
/*  y is the enclosing VCAT etc. object;  ratm is TRUE if a ^ lies after     */
/*  x anywhere.  dim is COLM or ROWM.                                        */
/*                                                                           */
/*  The meaning of the key variables is as follows:                          */
/*                                                                           */
/*  be       The amount by which back(x, dim) can increase from zero         */
/*           without having any impact on size(y, dim).  Thereafter,         */
/*           any increase causes an equal increase in size(y, dim).          */
/*                                                                           */
/*  fe       The amount by which fwd(x, dim) can increase from zero          */
/*           without having any impact on size(y, dim).  Thereafter,         */
/*           any increase causes an equal increase in size(y, dim).          */
/*                                                                           */
/*  backy,   The value that back(y, dim) and fwd(y, dim) would have if x     */
/*  fwdy     was definite with size 0,0.  They will in general be larger     */
/*           than the present values if x is indefinite, and smaller         */
/*           if x is definite, although it depends on marks and gaps.        */
/*                                                                           */
/*****************************************************************************/

static void CatConstrained(OBJECT x, CONSTRAINT *xc, BOOLEAN ratm,
OBJECT y, int dim, OBJECT *why)
{ int side;			/* the size of y that x is on: BACK, ON, FWD */
  CONSTRAINT yc;		/* constraints on y                          */
  FULL_LENGTH backy, fwdy;	/* back(y), fwd(y) would be if x was (0, 0)  */
  FULL_LENGTH be, fe;		/* amount back(x), fwd(x) can be for free    */
  FULL_LENGTH beffect, feffect;	/* scratch variables for calculations        */
  FULL_LENGTH seffect;		/* scratch variables for calculations        */
  OBJECT link, sg, pg;	/* link to x, its successor and predecessor  */
  OBJECT prec_def, sd;	/* definite object preceding (succeeding) x  */
  int tb, tbf, tf, tbc, tbfc, tfc, mxy, myz;

  Constrained(y, &yc, dim, why);
  if( constrained(yc) )
  {
    /* find the link of x, and its neighbours and their links */
    link = UpDim(x, dim);
    SetNeighbours(link, ratm, &pg, &prec_def, &sg, &sd, &side);

    /* amount of space available at x without changing the size of y */
    be = pg == nilobj ? 0 : ExtraGap(fwd(prec_def, dim), 0, &gap(pg), BACK);
    fe = sg == nilobj ? 0 : ExtraGap(0, back(sd, dim),      &gap(sg), FWD);

    if( is_indefinite(type(x)) )
    {
      /* insert two lengths and delete one */
      beffect = pg==nilobj ? 0 : MinGap(fwd(prec_def, dim), 0, 0, &gap(pg));
      feffect = sg==nilobj ? 0 : MinGap(0, back(sd,dim), fwd(sd,dim), &gap(sg));
      seffect = pg==nilobj ?
	  sg == nilobj ? 0 : back(sd, dim) :
	  sg == nilobj ? fwd(prec_def, dim) :
	    MinGap(fwd(prec_def, dim), back(sd, dim), fwd(sd, dim), &gap(sg));

      switch( side )
      {
	case BACK:	backy = back(y, dim) + beffect + feffect - seffect;
			fwdy  = fwd(y, dim);
			break;

	case ON:	/* must be first, other cases prohibited */
			backy = 0;
			fwdy = fwd(y, dim) + feffect;
			break;

	case FWD:	backy = back(y, dim);
			fwdy  = fwd(y, dim) + beffect + feffect - seffect;
			break;
      }
    }

    else /* x is definite */

    { beffect = pg == nilobj ? back(x, dim) :
	MinGap(fwd(prec_def, dim), back(x,dim), fwd(x,dim), &gap(pg)) -
	MinGap(fwd(prec_def, dim), 0,           0,          &gap(pg));

      feffect = sg == nilobj ? fwd(x, dim) :
	MinGap(fwd(x, dim), back(sd, dim), fwd(sd, dim), &gap(sg)) -
	MinGap(0,           back(sd, dim), fwd(sd, dim), &gap(sg));

      switch( side )
      {
	case BACK:	backy = back(y, dim) - beffect - feffect;
			fwdy  = fwd(y, dim);
			break;

	case ON:	backy = back(y, dim) - beffect;
			fwdy  = fwd(y, dim)  - feffect;
			break;

	case FWD:	backy = back(y, dim);
			fwdy  = fwd(y, dim) - beffect - feffect;
			break;
      }
    }

    debug5(DSC, DD, "  side: %s, backy: %s, fwdy: %s, be: %s, fe: %s",
		Image(side), EchoLength(backy), EchoLength(fwdy),
		EchoLength(be), EchoLength(fe) );

    if( !FitsConstraint(backy, fwdy, yc) )
      SetConstraint(*xc, -1, -1, -1);
    else switch( side )
    {

      case BACK:
	
	tbc = bc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bc(yc) - backy;
	tbfc = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - backy - fwdy;
	mxy = find_min(tbc, tbfc);
	tb  = find_min(MAX_FULL_LENGTH, be + mxy);
	tbf = find_min(MAX_FULL_LENGTH, be + fe + mxy);
	tf  = find_min(MAX_FULL_LENGTH, fe + mxy);
	SetConstraint(*xc, tb, tbf, tf);
	break;


      case ON:
	
	tbc = bc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bc(yc) - backy;
	tbfc = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - backy - fwdy;
	tfc = fc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : fc(yc) - fwdy;
	mxy = find_min(tbc, tbfc);
	myz = find_min(tfc, tbfc);
	tb  = find_min(MAX_FULL_LENGTH, be + mxy);
	tbf = find_min(MAX_FULL_LENGTH, be + fe + tbfc);
	tf  = find_min(MAX_FULL_LENGTH, fe + myz);
	SetConstraint(*xc, tb, tbf, tf);
	break;
	

      case FWD:

	tfc = fc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : fc(yc) - fwdy;
	tbfc = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - backy - fwdy;
	mxy = find_min(tfc, tbfc);
	tb  = find_min(MAX_FULL_LENGTH, be + mxy);
	tbf = find_min(MAX_FULL_LENGTH, be + fe + mxy);
	tf  = find_min(MAX_FULL_LENGTH, fe + mxy);
	SetConstraint(*xc, tb, tbf, tf);
	break;
	
    }
  } /* end if( constrained ) */
  else SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
} /* end CatConstrained */


/*@::Constrained()@***********************************************************/
/*                                                                           */
/*  Constrained(x, xc, dim, why)                                             */
/*                                                                           */
/*  Calculate the size constraint of object x, and return it in *xc.         */
/*                                                                           */
/*  If the resulting constraint is a hard one caused by coming up against    */
/*  a HIGH (vertical) or WIDE (horizontal), set *why to this object; if      */
/*  not, leave *why unchanged.                                               */
/*                                                                           */
/*****************************************************************************/

void Constrained(OBJECT x, CONSTRAINT *xc, int dim, OBJECT *why)
{ OBJECT y, link, lp, rp, z, tlink, g;  CONSTRAINT yc, hc, vc;
  BOOLEAN ratm;  FULL_LENGTH xback, xfwd;  int tb, tf, tbf, tbc, tfc;
  SetLengthDim(dim);
  debug2(DSC, DD, "[ Constrained(%s, xc, %s, why), x =",
    Image(type(x)), dimen(dim));
  ifdebug(DSC, DD, DebugObject(x));
  assert( Up(x) != x, "Constrained: x has no parent!" );

  /* a CLOSURE which is external_ver is unconstrained in the ROWM direction */
  /* a CLOSURE which is external_hor is unconstrained in both directions   */
  if( type(x) == CLOSURE && ((dim==ROWM && external_ver(x)) || external_hor(x)) )
  {
    SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
    debug1(DSC, DD, "] Constrained returning %s (external)",EchoConstraint(xc));
    return;
  }

  /* find y, the parent of x */
  link = UpDim(x, dim);  ratm = FALSE;
  for( tlink = NextDown(link);  type(tlink) == LINK;  tlink = NextDown(tlink) )
  { Child(g, tlink);
    if( type(g) == GAP_OBJ && mark(gap(g)) )  ratm = TRUE;
  }
  y = tlink;
  debug1(DSC, DDD, "parent y = %s", Image(type(y)));
  ifdebug(DSC, DDD, DebugObject(y));

  switch( type(y) )
  {
    case PLAIN_GRAPHIC:
    case GRAPHIC:
    case KERN_SHRINK:
    case BEGIN_HEADER:
    case SET_HEADER:
    case ONE_COL:
    case ONE_ROW:
    case HCONTRACT:
    case VCONTRACT:
    case HEXPAND:
    case VEXPAND:
    case START_HVSPAN:
    case START_HSPAN:
    case START_VSPAN:
    case SPLIT:
    case BACKGROUND:

      Constrained(y, xc, dim, why);
      break;


    case HSCALE:
    case VSCALE:
    
      if( (dim == COLM) != (type(y) == HSCALE) )  Constrained(y, xc, dim, why);
      else SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      break;


    case HCOVER:
    case VCOVER:
    
      /* dubious, but not likely to arise anyway */
      if( (dim == COLM) != (type(y) == HCOVER) )  Constrained(y, xc, dim, why);
      else SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      break;


    case SCALE:

      Constrained(y, &yc, dim, why);
      if( dim == COLM && bc(constraint(y)) == 0 )
      {
	/* Lout-supplied factor required later, could be tiny */
	SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      }
      else
      { InvScaleConstraint(xc,
	  dim == COLM ? bc(constraint(y)) : fc(constraint(y)), &yc);
      }
      break;


    case ROTATE:
    
      Constrained(y, &hc, COLM, why);  Constrained(y, &vc, ROWM, why);
      RotateConstraint(xc, x, sparec(constraint(y)), &hc, &vc, dim);
      break;


    case WIDE:
    case HIGH:
    
      Constrained(y, xc, dim, why);
      if( (type(y)==WIDE) == (dim==COLM) )
      { MinConstraint(xc, &constraint(y));
	*why = y;
      }
      break;


    case HLIMITED:
    case VLIMITED:

      if( (type(y) == HLIMITED) == (dim == COLM) )
      {
	BOOLEAN still_searching = TRUE;
	z = y;
	SetConstraint(*xc, back(z, dim), size(z, dim), fwd(z, dim));
	debug2(DSC, D, "  [ %s (%s)", Image(type(z)), EchoConstraint(xc));
	while( still_searching && Up(z) != z )
	{
          Parent(z, UpDim(z, dim));
	  switch( type(z) )
	  {
	    case VLIMITED:
	    case HLIMITED:
	    case COL_THR:
	    case ROW_THR:
	    case ONE_COL:
	    case ONE_ROW:
	    case HCONTRACT:
	    case VCONTRACT:
	    case SPLIT:
	    case START_VSPAN:
	    case START_HSPAN:

	      SetConstraint(*xc, back(z, dim), size(z, dim), fwd(z, dim));
	      debug2(DSC, DD, "    let s = %s (%s)", Image(type(z)),
	        EchoConstraint(xc));
	      break;


	    case HSPANNER:
	    case VSPANNER:

	      /* SpannerAvailableSpace(z, dim, &b, &f); */
	      CopyConstraint(*xc, constraint(z));
	      debug2(DSC, D, "  ] let s = %s (%s) and stop",
		Image(type(z)), EchoConstraint(&constraint(z)));
	      still_searching = FALSE;
	      break;


	    default:

	      debug1(DSC, D, "  ] stopping at %s", Image(type(z)));
	      still_searching = FALSE;
	      break;
	  }
	}
	*why = y;
      }
      else
      {
        Constrained(y, xc, dim, why);
      }
      break;


    case VSPANNER:
    case HSPANNER:

      /* we're saying that a spanner has a fixed constraint that is */
      /* determined just once in its life                           */
      CopyConstraint(*xc, constraint(y));
      debug2(DSC, DD, "  Constrained(%s) = %s", Image(type(z)), EchoConstraint(xc));
      /* SetConstraint(*xc, back(y, dim), size(y, dim), fwd(y, dim)); */
      break;


    case HSHIFT:
    case VSHIFT:

      if( (type(y) == HSHIFT) == (dim == COLM) )
      { Constrained(y, &yc, dim, why);
	tf = FindShift(y, x, dim);
	SetConstraint(*xc,
	  find_min(bc(yc), bfc(yc)) - tf, bfc(yc), find_min(fc(yc), bfc(yc)) + tf);
      }
      else Constrained(y, xc, dim, why);
      break;


    case HEAD:
    
      if( dim == ROWM )
	SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      else
      {	CopyConstraint(yc, constraint(y));
	debug1(DSC, DD, "  head: %s; val is:", EchoConstraint(&yc));
	ifdebug(DSC, DD, DebugObject(y));
	goto REST_OF_HEAD;   /* a few lines down */
      }
      break;


    case COL_THR:
    case ROW_THR:

      assert( (type(y)==COL_THR) == (dim==COLM), "Constrained: COL_THR!" );
      Constrained(y, &yc, dim, why);
      tb = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - fwd(y, dim);
      tb = find_min(bc(yc), tb);
      tf = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - back(y, dim);
      tf = find_min(fc(yc), tf);
      SetConstraint(*xc, tb, bfc(yc), tf);
      break;


    case VCAT:
    case HCAT:
    case ACAT:
    
      if( (type(y)==VCAT) == (dim==ROWM) )
      {	CatConstrained(x, xc, ratm, y, dim, why);
	break;
      }
      Constrained(y, &yc, dim, why);
      if( !constrained(yc) )
	SetConstraint(*xc, MAX_FULL_LENGTH, MAX_FULL_LENGTH, MAX_FULL_LENGTH);
      else
      {
	REST_OF_HEAD:
	/* let lp and rp be the links of the gaps delimiting */
	/* the components joined to x (or parent if no such) */
	for( lp = PrevDown(link);  lp != y;  lp = PrevDown(lp) )
	{ Child(z, lp);
	  if( type(z) == GAP_OBJ && !join(gap(z)) )  break;
	}
	for( rp = NextDown(link);  rp != y;  rp = NextDown(rp) )
	{ Child(z, rp);
	  if( type(z) == GAP_OBJ && !join(gap(z)) )  break;
	}
	if( lp == y && rp == y && !(type(y) == HEAD && seen_nojoin(y)) )
	{
	  /* if whole object is joined, do this */
          tb = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - fwd(y, dim);
          tb = find_min(bc(yc), tb);
          tf = bfc(yc) == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : bfc(yc) - back(y, dim);
          tf = find_min(fc(yc), tf);
          SetConstraint(*xc, tb, bfc(yc), tf);
	}
	else
	{
	  /* if // or || is present, do this */
	  xback = xfwd = 0;
	  for(link = NextDown(lp); link != rp;  link = NextDown(link) )
	  { Child(z, link);
	    if( type(z) == GAP_OBJ || is_index(type(z)) )  continue;
	    xback = find_max(xback, back(z, dim));
	    xfwd = find_max(xfwd, fwd(z, dim));
	  }
	  debug2(DSC, DD, "  lp != rp; xback,xfwd = %s,%s",
			EchoLength(xback), EchoLength(xfwd));
	  tbf = find_min(bfc(yc), fc(yc));
	  tbc = tbf == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : tbf - xfwd;
	  tfc = tbf == MAX_FULL_LENGTH ? MAX_FULL_LENGTH : tbf - xback;
	  SetConstraint(*xc, tbc, tbf, tfc);
	}
      }
      break;


    default:
    
      assert1(FALSE, "Constrained:", Image(type(y)));
      break;

  }
  debug2(DSC, DD, "] Constrained %s returning %s", Image(type(x)),
    EchoConstraint(xc));
} /* end Constrained */


/*@::EchoConstraint(), DebugConstrained()@************************************/
/*                                                                           */
/*  FULL_CHAR *EchoConstraint(c)                                             */
/*                                                                           */
/*  Returns a string showing constraint *c, in centimetres.                  */
/*                                                                           */
/*****************************************************************************/
#if DEBUG_ON

FULL_CHAR *EchoConstraint(CONSTRAINT *c)
{ static char str[2][40];
  static int i = 0;
  i = (i+1) % 2;
  sprintf(str[i], "<%s, %s, %s>", EchoLength(bc(*c)), EchoLength(bfc(*c)),
    EchoLength(fc(*c)));
  return AsciiToFull(str[i]);
} /* end EchoConstraint */


/*****************************************************************************/
/*                                                                           */
/*  DebugConstrained(x)                                                      */
/*                                                                           */
/*  Calculate and print the constraints of all closures lying within         */
/*  sized object x.                                                          */
/*                                                                           */
/*****************************************************************************/

void DebugConstrained(OBJECT x)
{ OBJECT y, link, why;
  CONSTRAINT c;
  debug1(DSC, DDD, "DebugConstrained( %s )", EchoObject(x) );
  switch( type(x) )
  {

    case CROSS:
    case FORCE_CROSS:
    case ROTATE:
    case BACKGROUND:
    case INCGRAPHIC:
    case SINCGRAPHIC:
    case PLAIN_GRAPHIC:
    case GRAPHIC:
    case KERN_SHRINK:
    case WORD:
    case QWORD:
    case START_HVSPAN:
    case START_HSPAN:
    case START_VSPAN:
    case HSPAN:
    case VSPAN:
    
      break;


    case CLOSURE:
    
      Constrained(x, &c, COLM, &why);
      debug2(DSC, DD, "Constrained( %s, &c, COLM ) = %s",
	EchoObject(x), EchoConstraint(&c));
      Constrained(x, &c, ROWM, &why);
      debug2(DSC, DD, "Constrained( %s, &c, ROWM ) = %s",
	EchoObject(x), EchoConstraint(&c));
      break;


    case SPLIT:
    
      link = DownDim(x, COLM);  Child(y, link);
      DebugConstrained(y);
      break;


    case HEAD:
    case ONE_COL:
    case ONE_ROW:
    case HCONTRACT:
    case VCONTRACT:
    case HLIMITED:
    case VLIMITED:
    case HEXPAND:
    case VEXPAND:
    case HSCALE:
    case VSCALE:
    case HCOVER:
    case VCOVER:
    case SCALE:
    case WIDE:
    case HIGH:
    
      link = Down(x);  Child(y, link);
      DebugConstrained(y);
      break;


    case COL_THR:
    case VCAT:
    case HCAT:
    case ACAT:
    
      for( link = Down(x);  link != x;  link =NextDown(link) )
      {	Child(y, link);
	if( type(y) != GAP_OBJ && !is_index(type(y)) )  DebugConstrained(y);
      }
      break;


    default:
    
      assert1(FALSE, "DebugConstrained:", Image(type(x)));
      break;

  }
  debug0(DSC, DDD, "DebugConstrained returning.");
} /* end DebugConstrained */
#endif