aboutsummaryrefslogtreecommitdiffstats
path: root/entity/entity.go
blob: a1e8e57e62f2099ba15d58ba549daaf3c8440f9d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
package entity

import (
	"encoding/json"
	"fmt"
	"sort"

	"github.com/pkg/errors"

	"github.com/MichaelMure/git-bug/repository"
	"github.com/MichaelMure/git-bug/util/lamport"
)

const refsPattern = "refs/%s/%s"
const creationClockPattern = "%s-create"
const editClockPattern = "%s-edit"

type Operation interface {
	Id() Id
	// MarshalJSON() ([]byte, error)
	Validate() error
}

// Definition hold the details defining one specialization of an Entity.
type Definition struct {
	// the name of the entity (bug, pull-request, ...)
	typename string
	// the namespace in git (bugs, prs, ...)
	namespace string
	// a function decoding a JSON message into an Operation
	operationUnmarshaler func(raw json.RawMessage) (Operation, error)
	// the expected format version number
	formatVersion uint
}

type Entity struct {
	Definition

	ops     []Operation
	staging []Operation

	packClock  lamport.Clock
	lastCommit repository.Hash
}

func New(definition Definition) *Entity {
	return &Entity{
		Definition: definition,
		packClock:  lamport.NewMemClock(),
	}
}

func Read(def Definition, repo repository.ClockedRepo, id Id) (*Entity, error) {
	if err := id.Validate(); err != nil {
		return nil, errors.Wrap(err, "invalid id")
	}

	ref := fmt.Sprintf("refs/%s/%s", def.namespace, id.String())

	return read(def, repo, ref)
}

// read fetch from git and decode an Entity at an arbitrary git reference.
func read(def Definition, repo repository.ClockedRepo, ref string) (*Entity, error) {
	rootHash, err := repo.ResolveRef(ref)
	if err != nil {
		return nil, err
	}

	// Perform a depth-first search to get a topological order of the DAG where we discover the
	// parents commit and go back in time up to the chronological root

	stack := make([]repository.Hash, 0, 32)
	visited := make(map[repository.Hash]struct{})
	DFSOrder := make([]repository.Commit, 0, 32)

	stack = append(stack, rootHash)

	for len(stack) > 0 {
		// pop
		hash := stack[len(stack)-1]
		stack = stack[:len(stack)-1]

		if _, ok := visited[hash]; ok {
			continue
		}

		// mark as visited
		visited[hash] = struct{}{}

		commit, err := repo.ReadCommit(hash)
		if err != nil {
			return nil, err
		}

		DFSOrder = append(DFSOrder, commit)

		for _, parent := range commit.Parents {
			stack = append(stack, parent)
		}
	}

	// Now, we can reverse this topological order and read the commits in an order where
	// we are sure to have read all the chronological ancestors when we read a commit.

	// Next step is to:
	// 1) read the operationPacks
	// 2) make sure that the clocks causality respect the DAG topology.

	oppMap := make(map[repository.Hash]*operationPack)
	var opsCount int
	var packClock = lamport.NewMemClock()

	for i := len(DFSOrder) - 1; i >= 0; i-- {
		commit := DFSOrder[i]
		firstCommit := i == len(DFSOrder)-1

		// Verify DAG structure: single chronological root, so only the root
		// can have no parents
		if !firstCommit && len(commit.Parents) == 0 {
			return nil, fmt.Errorf("multiple root in the entity DAG")
		}

		opp, err := readOperationPack(def, repo, commit.TreeHash)
		if err != nil {
			return nil, err
		}

		// Check that the lamport clocks are set
		if firstCommit && opp.CreateTime <= 0 {
			return nil, fmt.Errorf("creation lamport time not set")
		}
		if opp.EditTime <= 0 {
			return nil, fmt.Errorf("edition lamport time not set")
		}
		if opp.PackTime <= 0 {
			return nil, fmt.Errorf("pack lamport time not set")
		}

		// make sure that the lamport clocks causality match the DAG topology
		for _, parentHash := range commit.Parents {
			parentPack, ok := oppMap[parentHash]
			if !ok {
				panic("DFS failed")
			}

			if parentPack.EditTime >= opp.EditTime {
				return nil, fmt.Errorf("lamport clock ordering doesn't match the DAG")
			}

			// to avoid an attack where clocks are pushed toward the uint64 rollover, make sure
			// that the clocks don't jump too far in the future
			if opp.EditTime-parentPack.EditTime > 10_000 {
				return nil, fmt.Errorf("lamport clock jumping too far in the future, likely an attack")
			}
		}

		oppMap[commit.Hash] = opp
		opsCount += len(opp.Operations)
	}

	// The clocks are fine, we witness them
	for _, opp := range oppMap {
		err = repo.Witness(fmt.Sprintf(creationClockPattern, def.namespace), opp.CreateTime)
		if err != nil {
			return nil, err
		}
		err = repo.Witness(fmt.Sprintf(editClockPattern, def.namespace), opp.EditTime)
		if err != nil {
			return nil, err
		}
		err = packClock.Witness(opp.PackTime)
		if err != nil {
			return nil, err
		}
	}

	// Now that we know that the topological order and clocks are fine, we order the operationPacks
	// based on the logical clocks, entirely ignoring the DAG topology

	oppSlice := make([]*operationPack, 0, len(oppMap))
	for _, pack := range oppMap {
		oppSlice = append(oppSlice, pack)
	}
	sort.Slice(oppSlice, func(i, j int) bool {
		// Primary ordering with the dedicated "pack" Lamport time that encode causality
		// within the entity
		if oppSlice[i].PackTime != oppSlice[j].PackTime {
			return oppSlice[i].PackTime < oppSlice[i].PackTime
		}
		// We have equal PackTime, which means we had a concurrent edition. We can't tell which exactly
		// came first. As a secondary arbitrary ordering, we can use the EditTime. It's unlikely to be
		// enough but it can give us an edge to approach what really happened.
		if oppSlice[i].EditTime != oppSlice[j].EditTime {
			return oppSlice[i].EditTime < oppSlice[j].EditTime
		}
		// Well, what now? We still need a total ordering, the most stable possible.
		// As a last resort, we can order based on a hash of the serialized Operations in the
		// operationPack. It doesn't carry much meaning but it's unbiased and hard to abuse.
		// This is a lexicographic ordering.
		return oppSlice[i].Id < oppSlice[j].Id
	})

	// Now that we ordered the operationPacks, we have the order of the Operations

	ops := make([]Operation, 0, opsCount)
	for _, pack := range oppSlice {
		for _, operation := range pack.Operations {
			ops = append(ops, operation)
		}
	}

	return &Entity{
		Definition: def,
		ops:        ops,
		lastCommit: rootHash,
	}, nil
}

// Id return the Entity identifier
func (e *Entity) Id() Id {
	// id is the id of the first operation
	return e.FirstOp().Id()
}

func (e *Entity) Validate() error {
	// non-empty
	if len(e.ops) == 0 && len(e.staging) == 0 {
		return fmt.Errorf("entity has no operations")
	}

	// check if each operations are valid
	for _, op := range e.ops {
		if err := op.Validate(); err != nil {
			return err
		}
	}

	// check if staging is valid if needed
	for _, op := range e.staging {
		if err := op.Validate(); err != nil {
			return err
		}
	}

	// Check that there is no colliding operation's ID
	ids := make(map[Id]struct{})
	for _, op := range e.Operations() {
		if _, ok := ids[op.Id()]; ok {
			return fmt.Errorf("id collision: %s", op.Id())
		}
		ids[op.Id()] = struct{}{}
	}

	return nil
}

// return the ordered operations
func (e *Entity) Operations() []Operation {
	return append(e.ops, e.staging...)
}

// Lookup for the very first operation of the Entity.
func (e *Entity) FirstOp() Operation {
	for _, op := range e.ops {
		return op
	}
	for _, op := range e.staging {
		return op
	}
	return nil
}

func (e *Entity) Append(op Operation) {
	e.staging = append(e.staging, op)
}

func (e *Entity) NeedCommit() bool {
	return len(e.staging) > 0
}

func (e *Entity) CommitAdNeeded(repo repository.ClockedRepo) error {
	if e.NeedCommit() {
		return e.Commit(repo)
	}
	return nil
}

// TODO: support commit signature
func (e *Entity) Commit(repo repository.ClockedRepo) error {
	if !e.NeedCommit() {
		return fmt.Errorf("can't commit an entity with no pending operation")
	}

	if err := e.Validate(); err != nil {
		return errors.Wrapf(err, "can't commit a %s with invalid data", e.Definition.typename)
	}

	// increment the various clocks for this new operationPack
	packTime, err := e.packClock.Increment()
	if err != nil {
		return err
	}
	editTime, err := repo.Increment(fmt.Sprintf(editClockPattern, e.namespace))
	if err != nil {
		return err
	}
	var creationTime lamport.Time
	if e.lastCommit == "" {
		creationTime, err = repo.Increment(fmt.Sprintf(creationClockPattern, e.namespace))
		if err != nil {
			return err
		}
	}

	opp := &operationPack{
		Operations: e.staging,
		CreateTime: creationTime,
		EditTime:   editTime,
		PackTime:   packTime,
	}

	treeHash, err := opp.write(e.Definition, repo)
	if err != nil {
		return err
	}

	// Write a Git commit referencing the tree, with the previous commit as parent
	var commitHash repository.Hash
	if e.lastCommit != "" {
		commitHash, err = repo.StoreCommitWithParent(treeHash, e.lastCommit)
	} else {
		commitHash, err = repo.StoreCommit(treeHash)
	}
	if err != nil {
		return err
	}

	e.lastCommit = commitHash
	e.ops = append(e.ops, e.staging...)
	e.staging = nil

	// Create or update the Git reference for this entity
	// When pushing later, the remote will ensure that this ref update
	// is fast-forward, that is no data has been overwritten.
	ref := fmt.Sprintf(refsPattern, e.namespace, e.Id().String())
	return repo.UpdateRef(ref, commitHash)
}