aboutsummaryrefslogblamecommitdiffstats
path: root/vendor/github.com/graphql-go/graphql/rules_overlapping_fields_can_be_merged.go
blob: 836fb43fe4c173ebabe3ed06e7cd4d17b0330c88 (plain) (tree)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706

































































































































































































































































































































































































































































































































































































































































































































                                                                                                                                                                                                                                  
package graphql

import (
	"fmt"
	"strings"

	"github.com/graphql-go/graphql/language/ast"
	"github.com/graphql-go/graphql/language/kinds"
	"github.com/graphql-go/graphql/language/printer"
	"github.com/graphql-go/graphql/language/visitor"
)

func fieldsConflictMessage(responseName string, reason conflictReason) string {
	return fmt.Sprintf(`Fields "%v" conflict because %v. `+
		`Use different aliases on the fields to fetch both if this was intentional.`,
		responseName,
		fieldsConflictReasonMessage(reason),
	)
}

func fieldsConflictReasonMessage(message interface{}) string {
	switch reason := message.(type) {
	case string:
		return reason
	case conflictReason:
		return fieldsConflictReasonMessage(reason.Message)
	case []conflictReason:
		messages := []string{}
		for _, r := range reason {
			messages = append(messages, fmt.Sprintf(
				`subfields "%v" conflict because %v`,
				r.Name,
				fieldsConflictReasonMessage(r.Message),
			))
		}
		return strings.Join(messages, " and ")
	}
	return ""
}

// OverlappingFieldsCanBeMergedRule Overlapping fields can be merged
//
// A selection set is only valid if all fields (including spreading any
// fragments) either correspond to distinct response names or can be merged
// without ambiguity.
func OverlappingFieldsCanBeMergedRule(context *ValidationContext) *ValidationRuleInstance {

	// A memoization for when two fragments are compared "between" each other for
	// conflicts. Two fragments may be compared many times, so memoizing this can
	// dramatically improve the performance of this validator.
	comparedSet := newPairSet()

	// A cache for the "field map" and list of fragment names found in any given
	// selection set. Selection sets may be asked for this information multiple
	// times, so this improves the performance of this validator.
	cacheMap := map[*ast.SelectionSet]*fieldsAndFragmentNames{}

	visitorOpts := &visitor.VisitorOptions{
		KindFuncMap: map[string]visitor.NamedVisitFuncs{
			kinds.SelectionSet: {
				Kind: func(p visitor.VisitFuncParams) (string, interface{}) {
					if selectionSet, ok := p.Node.(*ast.SelectionSet); ok && selectionSet != nil {
						parentType, _ := context.ParentType().(Named)

						rule := &overlappingFieldsCanBeMergedRule{
							context:     context,
							comparedSet: comparedSet,
							cacheMap:    cacheMap,
						}
						conflicts := rule.findConflictsWithinSelectionSet(parentType, selectionSet)
						if len(conflicts) > 0 {
							for _, c := range conflicts {
								responseName := c.Reason.Name
								reason := c.Reason
								reportError(
									context,
									fieldsConflictMessage(responseName, reason),
									append(c.FieldsLeft, c.FieldsRight...),
								)
							}
							return visitor.ActionNoChange, nil
						}
					}
					return visitor.ActionNoChange, nil
				},
			},
		},
	}
	return &ValidationRuleInstance{
		VisitorOpts: visitorOpts,
	}
}

/**
 * Algorithm:
 *
 * Conflicts occur when two fields exist in a query which will produce the same
 * response name, but represent differing values, thus creating a conflict.
 * The algorithm below finds all conflicts via making a series of comparisons
 * between fields. In order to compare as few fields as possible, this makes
 * a series of comparisons "within" sets of fields and "between" sets of fields.
 *
 * Given any selection set, a collection produces both a set of fields by
 * also including all inline fragments, as well as a list of fragments
 * referenced by fragment spreads.
 *
 * A) Each selection set represented in the document first compares "within" its
 * collected set of fields, finding any conflicts between every pair of
 * overlapping fields.
 * Note: This is the *only time* that a the fields "within" a set are compared
 * to each other. After this only fields "between" sets are compared.
 *
 * B) Also, if any fragment is referenced in a selection set, then a
 * comparison is made "between" the original set of fields and the
 * referenced fragment.
 *
 * C) Also, if multiple fragments are referenced, then comparisons
 * are made "between" each referenced fragment.
 *
 * D) When comparing "between" a set of fields and a referenced fragment, first
 * a comparison is made between each field in the original set of fields and
 * each field in the the referenced set of fields.
 *
 * E) Also, if any fragment is referenced in the referenced selection set,
 * then a comparison is made "between" the original set of fields and the
 * referenced fragment (recursively referring to step D).
 *
 * F) When comparing "between" two fragments, first a comparison is made between
 * each field in the first referenced set of fields and each field in the the
 * second referenced set of fields.
 *
 * G) Also, any fragments referenced by the first must be compared to the
 * second, and any fragments referenced by the second must be compared to the
 * first (recursively referring to step F).
 *
 * H) When comparing two fields, if both have selection sets, then a comparison
 * is made "between" both selection sets, first comparing the set of fields in
 * the first selection set with the set of fields in the second.
 *
 * I) Also, if any fragment is referenced in either selection set, then a
 * comparison is made "between" the other set of fields and the
 * referenced fragment.
 *
 * J) Also, if two fragments are referenced in both selection sets, then a
 * comparison is made "between" the two fragments.
 *
 */

type overlappingFieldsCanBeMergedRule struct {
	context *ValidationContext

	// A memoization for when two fragments are compared "between" each other for
	// conflicts. Two fragments may be compared many times, so memoizing this can
	// dramatically improve the performance of this validator.
	comparedSet *pairSet

	// A cache for the "field map" and list of fragment names found in any given
	// selection set. Selection sets may be asked for this information multiple
	// times, so this improves the performance of this validator.
	cacheMap map[*ast.SelectionSet]*fieldsAndFragmentNames
}

// Find all conflicts found "within" a selection set, including those found
// via spreading in fragments. Called when visiting each SelectionSet in the
// GraphQL Document.
func (rule *overlappingFieldsCanBeMergedRule) findConflictsWithinSelectionSet(parentType Named, selectionSet *ast.SelectionSet) []conflict {
	conflicts := []conflict{}

	fieldsInfo := rule.getFieldsAndFragmentNames(parentType, selectionSet)

	// (A) Find find all conflicts "within" the fields of this selection set.
	// Note: this is the *only place* `collectConflictsWithin` is called.
	conflicts = rule.collectConflictsWithin(conflicts, fieldsInfo)

	// (B) Then collect conflicts between these fields and those represented by
	// each spread fragment name found.
	for i := 0; i < len(fieldsInfo.fragmentNames); i++ {

		conflicts = rule.collectConflictsBetweenFieldsAndFragment(conflicts, false, fieldsInfo, fieldsInfo.fragmentNames[i])

		// (C) Then compare this fragment with all other fragments found in this
		// selection set to collect conflicts between fragments spread together.
		// This compares each item in the list of fragment names to every other item
		// in that same list (except for itself).
		for k := i + 1; k < len(fieldsInfo.fragmentNames); k++ {
			conflicts = rule.collectConflictsBetweenFragments(conflicts, false, fieldsInfo.fragmentNames[i], fieldsInfo.fragmentNames[k])
		}
	}
	return conflicts
}

// Collect all conflicts found between a set of fields and a fragment reference
// including via spreading in any nested fragments.
func (rule *overlappingFieldsCanBeMergedRule) collectConflictsBetweenFieldsAndFragment(conflicts []conflict, areMutuallyExclusive bool, fieldsInfo *fieldsAndFragmentNames, fragmentName string) []conflict {
	fragment := rule.context.Fragment(fragmentName)
	if fragment == nil {
		return conflicts
	}

	fieldsInfo2 := rule.getReferencedFieldsAndFragmentNames(fragment)

	// (D) First collect any conflicts between the provided collection of fields
	// and the collection of fields represented by the given fragment.
	conflicts = rule.collectConflictsBetween(conflicts, areMutuallyExclusive, fieldsInfo, fieldsInfo2)

	// (E) Then collect any conflicts between the provided collection of fields
	// and any fragment names found in the given fragment.
	for _, fragmentName2 := range fieldsInfo2.fragmentNames {
		conflicts = rule.collectConflictsBetweenFieldsAndFragment(conflicts, areMutuallyExclusive, fieldsInfo2, fragmentName2)
	}

	return conflicts

}

// Collect all conflicts found between two fragments, including via spreading in
// any nested fragments.
func (rule *overlappingFieldsCanBeMergedRule) collectConflictsBetweenFragments(conflicts []conflict, areMutuallyExclusive bool, fragmentName1 string, fragmentName2 string) []conflict {
	fragment1 := rule.context.Fragment(fragmentName1)
	fragment2 := rule.context.Fragment(fragmentName2)

	if fragment1 == nil || fragment2 == nil {
		return conflicts
	}

	// No need to compare a fragment to itself.
	if fragment1 == fragment2 {
		return conflicts
	}

	// Memoize so two fragments are not compared for conflicts more than once.
	if rule.comparedSet.Has(fragmentName1, fragmentName2, areMutuallyExclusive) {
		return conflicts
	}
	rule.comparedSet.Add(fragmentName1, fragmentName2, areMutuallyExclusive)

	fieldsInfo1 := rule.getReferencedFieldsAndFragmentNames(fragment1)
	fieldsInfo2 := rule.getReferencedFieldsAndFragmentNames(fragment2)

	// (F) First, collect all conflicts between these two collections of fields
	// (not including any nested fragments).
	conflicts = rule.collectConflictsBetween(conflicts, areMutuallyExclusive, fieldsInfo1, fieldsInfo2)

	// (G) Then collect conflicts between the first fragment and any nested
	// fragments spread in the second fragment.
	for _, innerFragmentName2 := range fieldsInfo2.fragmentNames {
		conflicts = rule.collectConflictsBetweenFragments(conflicts, areMutuallyExclusive, fragmentName1, innerFragmentName2)
	}

	// (G) Then collect conflicts between the second fragment and any nested
	// fragments spread in the first fragment.
	for _, innerFragmentName1 := range fieldsInfo1.fragmentNames {
		conflicts = rule.collectConflictsBetweenFragments(conflicts, areMutuallyExclusive, innerFragmentName1, fragmentName2)
	}

	return conflicts
}

// Find all conflicts found between two selection sets, including those found
// via spreading in fragments. Called when determining if conflicts exist
// between the sub-fields of two overlapping fields.
func (rule *overlappingFieldsCanBeMergedRule) findConflictsBetweenSubSelectionSets(areMutuallyExclusive bool, parentType1 Named, selectionSet1 *ast.SelectionSet, parentType2 Named, selectionSet2 *ast.SelectionSet) []conflict {
	conflicts := []conflict{}

	fieldsInfo1 := rule.getFieldsAndFragmentNames(parentType1, selectionSet1)
	fieldsInfo2 := rule.getFieldsAndFragmentNames(parentType2, selectionSet2)

	// (H) First, collect all conflicts between these two collections of field.
	conflicts = rule.collectConflictsBetween(conflicts, areMutuallyExclusive, fieldsInfo1, fieldsInfo2)

	// (I) Then collect conflicts between the first collection of fields and
	// those referenced by each fragment name associated with the second.
	for _, fragmentName2 := range fieldsInfo2.fragmentNames {
		conflicts = rule.collectConflictsBetweenFieldsAndFragment(conflicts, areMutuallyExclusive, fieldsInfo1, fragmentName2)
	}

	// (I) Then collect conflicts between the second collection of fields and
	// those referenced by each fragment name associated with the first.
	for _, fragmentName1 := range fieldsInfo1.fragmentNames {
		conflicts = rule.collectConflictsBetweenFieldsAndFragment(conflicts, areMutuallyExclusive, fieldsInfo2, fragmentName1)
	}

	// (J) Also collect conflicts between any fragment names by the first and
	// fragment names by the second. This compares each item in the first set of
	// names to each item in the second set of names.
	for _, fragmentName1 := range fieldsInfo1.fragmentNames {
		for _, fragmentName2 := range fieldsInfo2.fragmentNames {
			conflicts = rule.collectConflictsBetweenFragments(conflicts, areMutuallyExclusive, fragmentName1, fragmentName2)
		}
	}
	return conflicts
}

// Collect all Conflicts "within" one collection of fields.
func (rule *overlappingFieldsCanBeMergedRule) collectConflictsWithin(conflicts []conflict, fieldsInfo *fieldsAndFragmentNames) []conflict {
	// A field map is a keyed collection, where each key represents a response
	// name and the value at that key is a list of all fields which provide that
	// response name. For every response name, if there are multiple fields, they
	// must be compared to find a potential conflict.
	for _, responseName := range fieldsInfo.fieldsOrder {
		fields, ok := fieldsInfo.fieldMap[responseName]
		if !ok {
			continue
		}
		// This compares every field in the list to every other field in this list
		// (except to itself). If the list only has one item, nothing needs to
		// be compared.
		if len(fields) <= 1 {
			continue
		}
		for i := 0; i < len(fields); i++ {
			for k := i + 1; k < len(fields); k++ {
				// within one collection is never mutually exclusive
				isMutuallyExclusive := false
				conflict := rule.findConflict(isMutuallyExclusive, responseName, fields[i], fields[k])
				if conflict != nil {
					conflicts = append(conflicts, *conflict)
				}
			}
		}
	}
	return conflicts
}

// Collect all Conflicts between two collections of fields. This is similar to,
// but different from the `collectConflictsWithin` function above. This check
// assumes that `collectConflictsWithin` has already been called on each
// provided collection of fields. This is true because this validator traverses
// each individual selection set.
func (rule *overlappingFieldsCanBeMergedRule) collectConflictsBetween(conflicts []conflict, parentFieldsAreMutuallyExclusive bool,
	fieldsInfo1 *fieldsAndFragmentNames,
	fieldsInfo2 *fieldsAndFragmentNames) []conflict {
	// A field map is a keyed collection, where each key represents a response
	// name and the value at that key is a list of all fields which provide that
	// response name. For any response name which appears in both provided field
	// maps, each field from the first field map must be compared to every field
	// in the second field map to find potential conflicts.
	for _, responseName := range fieldsInfo1.fieldsOrder {
		fields1, ok1 := fieldsInfo1.fieldMap[responseName]
		fields2, ok2 := fieldsInfo2.fieldMap[responseName]
		if !ok1 || !ok2 {
			continue
		}
		for i := 0; i < len(fields1); i++ {
			for k := 0; k < len(fields2); k++ {
				conflict := rule.findConflict(parentFieldsAreMutuallyExclusive, responseName, fields1[i], fields2[k])
				if conflict != nil {
					conflicts = append(conflicts, *conflict)
				}
			}
		}
	}
	return conflicts
}

// findConflict Determines if there is a conflict between two particular fields.
func (rule *overlappingFieldsCanBeMergedRule) findConflict(parentFieldsAreMutuallyExclusive bool, responseName string, field *fieldDefPair, field2 *fieldDefPair) *conflict {

	parentType1 := field.ParentType
	ast1 := field.Field
	def1 := field.FieldDef

	parentType2 := field2.ParentType
	ast2 := field2.Field
	def2 := field2.FieldDef

	// If it is known that two fields could not possibly apply at the same
	// time, due to the parent types, then it is safe to permit them to diverge
	// in aliased field or arguments used as they will not present any ambiguity
	// by differing.
	// It is known that two parent types could never overlap if they are
	// different Object types. Interface or Union types might overlap - if not
	// in the current state of the schema, then perhaps in some future version,
	// thus may not safely diverge.
	_, isParentType1Object := parentType1.(*Object)
	_, isParentType2Object := parentType2.(*Object)
	areMutuallyExclusive := parentFieldsAreMutuallyExclusive || parentType1 != parentType2 && isParentType1Object && isParentType2Object

	// The return type for each field.
	var type1 Type
	var type2 Type
	if def1 != nil {
		type1 = def1.Type
	}
	if def2 != nil {
		type2 = def2.Type
	}

	if !areMutuallyExclusive {
		// Two aliases must refer to the same field.
		name1 := ""
		name2 := ""

		if ast1.Name != nil {
			name1 = ast1.Name.Value
		}
		if ast2.Name != nil {
			name2 = ast2.Name.Value
		}
		if name1 != name2 {
			return &conflict{
				Reason: conflictReason{
					Name:    responseName,
					Message: fmt.Sprintf(`%v and %v are different fields`, name1, name2),
				},
				FieldsLeft:  []ast.Node{ast1},
				FieldsRight: []ast.Node{ast2},
			}
		}

		// Two field calls must have the same arguments.
		if !sameArguments(ast1.Arguments, ast2.Arguments) {
			return &conflict{
				Reason: conflictReason{
					Name:    responseName,
					Message: `they have differing arguments`,
				},
				FieldsLeft:  []ast.Node{ast1},
				FieldsRight: []ast.Node{ast2},
			}
		}
	}

	if type1 != nil && type2 != nil && doTypesConflict(type1, type2) {
		return &conflict{
			Reason: conflictReason{
				Name:    responseName,
				Message: fmt.Sprintf(`they return conflicting types %v and %v`, type1, type2),
			},
			FieldsLeft:  []ast.Node{ast1},
			FieldsRight: []ast.Node{ast2},
		}
	}

	// Collect and compare sub-fields. Use the same "visited fragment names" list
	// for both collections so fields in a fragment reference are never
	// compared to themselves.
	selectionSet1 := ast1.SelectionSet
	selectionSet2 := ast2.SelectionSet
	if selectionSet1 != nil && selectionSet2 != nil {
		conflicts := rule.findConflictsBetweenSubSelectionSets(areMutuallyExclusive, GetNamed(type1), selectionSet1, GetNamed(type2), selectionSet2)
		return subfieldConflicts(conflicts, responseName, ast1, ast2)
	}
	return nil
}

// Given a selection set, return the collection of fields (a mapping of response
// name to field ASTs and definitions) as well as a list of fragment names
// referenced via fragment spreads.
func (rule *overlappingFieldsCanBeMergedRule) getFieldsAndFragmentNames(parentType Named, selectionSet *ast.SelectionSet) *fieldsAndFragmentNames {
	if cached, ok := rule.cacheMap[selectionSet]; ok && cached != nil {
		return cached
	}

	astAndDefs := astAndDefCollection{}
	fieldsOrder := []string{}
	fragmentNames := []string{}
	fragmentNamesMap := map[string]bool{}

	var collectFieldsAndFragmentNames func(parentType Named, selectionSet *ast.SelectionSet)
	collectFieldsAndFragmentNames = func(parentType Named, selectionSet *ast.SelectionSet) {
		for _, selection := range selectionSet.Selections {
			switch selection := selection.(type) {
			case *ast.Field:
				fieldName := ""
				if selection.Name != nil {
					fieldName = selection.Name.Value
				}
				var fieldDef *FieldDefinition
				if parentType, ok := parentType.(*Object); ok && parentType != nil {
					fieldDef, _ = parentType.Fields()[fieldName]
				}
				if parentType, ok := parentType.(*Interface); ok && parentType != nil {
					fieldDef, _ = parentType.Fields()[fieldName]
				}

				responseName := fieldName
				if selection.Alias != nil {
					responseName = selection.Alias.Value
				}

				fieldDefPairs, ok := astAndDefs[responseName]
				if !ok || fieldDefPairs == nil {
					fieldDefPairs = []*fieldDefPair{}
					fieldsOrder = append(fieldsOrder, responseName)
				}

				fieldDefPairs = append(fieldDefPairs, &fieldDefPair{
					ParentType: parentType,
					Field:      selection,
					FieldDef:   fieldDef,
				})
				astAndDefs[responseName] = fieldDefPairs
			case *ast.FragmentSpread:
				fieldName := ""
				if selection.Name != nil {
					fieldName = selection.Name.Value
				}
				if val, ok := fragmentNamesMap[fieldName]; !ok || !val {
					fragmentNamesMap[fieldName] = true
					fragmentNames = append(fragmentNames, fieldName)
				}
			case *ast.InlineFragment:
				typeCondition := selection.TypeCondition
				inlineFragmentType := parentType
				if typeCondition != nil {
					ttype, err := typeFromAST(*(rule.context.Schema()), typeCondition)
					if err == nil {
						inlineFragmentType, _ = ttype.(Named)
					}
				}
				collectFieldsAndFragmentNames(inlineFragmentType, selection.SelectionSet)
			}
		}
	}
	collectFieldsAndFragmentNames(parentType, selectionSet)

	cached := &fieldsAndFragmentNames{
		fieldMap:      astAndDefs,
		fieldsOrder:   fieldsOrder,
		fragmentNames: fragmentNames,
	}

	rule.cacheMap[selectionSet] = cached
	return cached
}

func (rule *overlappingFieldsCanBeMergedRule) getReferencedFieldsAndFragmentNames(fragment *ast.FragmentDefinition) *fieldsAndFragmentNames {
	// Short-circuit building a type from the AST if possible.
	if cached, ok := rule.cacheMap[fragment.SelectionSet]; ok && cached != nil {
		return cached
	}
	fragmentType, err := typeFromAST(*(rule.context.Schema()), fragment.TypeCondition)
	if err != nil {
		return nil
	}
	return rule.getFieldsAndFragmentNames(fragmentType, fragment.SelectionSet)
}

type conflictReason struct {
	Name    string
	Message interface{} // conflictReason || []conflictReason
}
type conflict struct {
	Reason      conflictReason
	FieldsLeft  []ast.Node
	FieldsRight []ast.Node
}

// a.k.a AstAndDef
type fieldDefPair struct {
	ParentType Named
	Field      *ast.Field
	FieldDef   *FieldDefinition
}
type astAndDefCollection map[string][]*fieldDefPair

// cache struct for fields, its order and fragments names
type fieldsAndFragmentNames struct {
	fieldMap      astAndDefCollection
	fieldsOrder   []string // stores the order of field names in fieldMap
	fragmentNames []string
}

// pairSet A way to keep track of pairs of things when the ordering of the pair does
// not matter. We do this by maintaining a sort of double adjacency sets.
type pairSet struct {
	data map[string]map[string]bool
}

func newPairSet() *pairSet {
	return &pairSet{
		data: map[string]map[string]bool{},
	}
}
func (pair *pairSet) Has(a string, b string, areMutuallyExclusive bool) bool {
	first, ok := pair.data[a]
	if !ok || first == nil {
		return false
	}
	res, ok := first[b]
	if !ok {
		return false
	}
	// areMutuallyExclusive being false is a superset of being true,
	// hence if we want to know if this PairSet "has" these two with no
	// exclusivity, we have to ensure it was added as such.
	if !areMutuallyExclusive {
		return res == false
	}
	return true
}
func (pair *pairSet) Add(a string, b string, areMutuallyExclusive bool) {
	pair.data = pairSetAdd(pair.data, a, b, areMutuallyExclusive)
	pair.data = pairSetAdd(pair.data, b, a, areMutuallyExclusive)
}
func pairSetAdd(data map[string]map[string]bool, a, b string, areMutuallyExclusive bool) map[string]map[string]bool {
	set, ok := data[a]
	if !ok || set == nil {
		set = map[string]bool{}
	}
	set[b] = areMutuallyExclusive
	data[a] = set
	return data
}

func sameArguments(args1 []*ast.Argument, args2 []*ast.Argument) bool {
	if len(args1) != len(args2) {
		return false
	}

	for _, arg1 := range args1 {
		arg1Name := ""
		if arg1.Name != nil {
			arg1Name = arg1.Name.Value
		}

		var foundArgs2 *ast.Argument
		for _, arg2 := range args2 {
			arg2Name := ""
			if arg2.Name != nil {
				arg2Name = arg2.Name.Value
			}
			if arg1Name == arg2Name {
				foundArgs2 = arg2
			}
			break
		}
		if foundArgs2 == nil {
			return false
		}
		if sameValue(arg1.Value, foundArgs2.Value) == false {
			return false
		}
	}

	return true
}

func sameValue(value1 ast.Value, value2 ast.Value) bool {
	if value1 == nil && value2 == nil {
		return true
	}
	val1 := printer.Print(value1)
	val2 := printer.Print(value2)

	return val1 == val2
}

// Two types conflict if both types could not apply to a value simultaneously.
// Composite types are ignored as their individual field types will be compared
// later recursively. However List and Non-Null types must match.
func doTypesConflict(type1 Output, type2 Output) bool {
	if type1, ok := type1.(*List); ok {
		if type2, ok := type2.(*List); ok {
			return doTypesConflict(type1.OfType, type2.OfType)
		}
		return true
	}
	if type2, ok := type2.(*List); ok {
		if type1, ok := type1.(*List); ok {
			return doTypesConflict(type1.OfType, type2.OfType)
		}
		return true
	}
	if type1, ok := type1.(*NonNull); ok {
		if type2, ok := type2.(*NonNull); ok {
			return doTypesConflict(type1.OfType, type2.OfType)
		}
		return true
	}
	if type2, ok := type2.(*NonNull); ok {
		if type1, ok := type1.(*NonNull); ok {
			return doTypesConflict(type1.OfType, type2.OfType)
		}
		return true
	}
	if IsLeafType(type1) || IsLeafType(type2) {
		return type1 != type2
	}
	return false
}

// subfieldConflicts Given a series of Conflicts which occurred between two sub-fields, generate a single Conflict.
func subfieldConflicts(conflicts []conflict, responseName string, ast1 *ast.Field, ast2 *ast.Field) *conflict {
	if len(conflicts) > 0 {
		conflictReasons := []conflictReason{}
		conflictFieldsLeft := []ast.Node{ast1}
		conflictFieldsRight := []ast.Node{ast2}
		for _, c := range conflicts {
			conflictReasons = append(conflictReasons, c.Reason)
			conflictFieldsLeft = append(conflictFieldsLeft, c.FieldsLeft...)
			conflictFieldsRight = append(conflictFieldsRight, c.FieldsRight...)
		}

		return &conflict{
			Reason: conflictReason{
				Name:    responseName,
				Message: conflictReasons,
			},
			FieldsLeft:  conflictFieldsLeft,
			FieldsRight: conflictFieldsRight,
		}
	}
	return nil
}