package identity
import (
"bytes"
"encoding/json"
"fmt"
"io"
"strings"
"time"
"github.com/pkg/errors"
"golang.org/x/crypto/openpgp"
"golang.org/x/crypto/openpgp/armor"
"golang.org/x/crypto/openpgp/packet"
"github.com/MichaelMure/git-bug/repository"
)
type Key struct {
public *packet.PublicKey
private *packet.PrivateKey
}
// GenerateKey generate a keypair (public+private)
func GenerateKey() *Key {
entity, err := openpgp.NewEntity("", "", "", &packet.Config{
// The armored format doesn't include the creation time, which makes the round-trip data not being fully equal.
// We don't care about the creation time so we can set it to the zero value.
Time: func() time.Time {
return time.Time{}
},
})
if err != nil {
panic(err)
}
return &Key{
public: entity.PrimaryKey,
private: entity.PrivateKey,
}
}
// generatePublicKey generate only a public key (only useful for testing)
// See GenerateKey for the details.
func generatePublicKey() *Key {
k := GenerateKey()
k.private = nil
return k
}
func (k *Key) MarshalJSON() ([]byte, error) {
var buf bytes.Buffer
w, err := armor.Encode(&buf, openpgp.PublicKeyType, nil)
if err != nil {
return nil, err
}
err = k.public.Serialize(w)
if err != nil {
return nil, err
}
err = w.Close()
if err != nil {
return nil, err
}
return json.Marshal(buf.String())
}
func (k *Key) UnmarshalJSON(data []byte) error {
var armored string
err := json.Unmarshal(data, &armored)
if err != nil {
return err
}
block, err := armor.Decode(strings.NewReader(armored))
if err == io.EOF {
return fmt.Errorf("no armored data found")
}
if err != nil {
return err
}
if block.Type != openpgp.PublicKeyType {
return fmt.Errorf("invalid key type")
}
reader := packet.NewReader(block.Body)
p, err := reader.Next()
if err != nil {
return errors.Wrap(err, "failed to read public key packet")
}
public, ok := p.(*packet.PublicKey)
if !ok {
return errors.New("got no packet.publicKey")
}
// The armored format doesn't include the creation time, which makes the round-trip data not being fully equal.
// We don't care about the creation time so we can set it to the zero value.
public.CreationTime = time.Time{}
k.public = public
return nil
}
func (k *Key) Validate() error {
if k.public == nil {
return fmt.Errorf("nil public key")
}
if !k.public.CanSign() {
return fmt.Errorf("public key can't sign")
}
if k.private != nil {
if !k.private.CanSign() {
return fmt.Errorf("private key can't sign")
}
}
return nil
}
func (k *Key) Clone() *Key {
clone := &Key{}
pub := *k.public
clone.public = &pub
if k.private != nil {
priv := *k.private
clone.private = &priv
}
return clone
}
func (k *Key) EnsurePrivateKey(repo repository.RepoKeyring) error {
if k.private != nil {
return nil
}
// item, err := repo.Keyring().Get(k.Fingerprint())
// if err != nil {
// return fmt.Errorf("no private key found for %s", k.Fingerprint())
// }
//
panic("TODO")
}
func (k *Key) Fingerprint() string {
return string(k.public.Fingerprint[:])
}
func (k *Key) PGPEntity() *openpgp.Entity {
return &openpgp.Entity{
PrimaryKey: k.public,
PrivateKey: k.private,
}
}
var _ openpgp.KeyRing = &PGPKeyring{}
// PGPKeyring implement a openpgp.KeyRing from an slice of Key
type PGPKeyring []*Key
func (pk PGPKeyring) KeysById(id uint64) []openpgp.Key {
var result []openpgp.Key
for _, key := range pk {
if key.public.KeyId == id {
result = append(result, openpgp.Key{
PublicKey: key.public,
PrivateKey: key.private,
})
}
}
return result
}
func (pk PGPKeyring) KeysByIdUsage(id uint64, requiredUsage byte) []openpgp.Key {
// the only usage we care about is the ability to sign, which all keys should already be capable of
return pk.KeysById(id)
}
func (pk PGPKeyring) DecryptionKeys() []openpgp.Key {
result := make([]openpgp.Key, len(pk))
for i, key := range pk {
result[i] = openpgp.Key{
PublicKey: key.public,
PrivateKey: key.private,
}
}
return result
}