// Package dag contains the base common code to define an entity stored
// in a chain of git objects, supporting actions like Push, Pull and Merge.
package dag
import (
"encoding/json"
"fmt"
"sort"
"github.com/pkg/errors"
"github.com/MichaelMure/git-bug/entity"
"github.com/MichaelMure/git-bug/identity"
"github.com/MichaelMure/git-bug/repository"
"github.com/MichaelMure/git-bug/util/lamport"
)
const refsPattern = "refs/%s/%s"
const creationClockPattern = "%s-create"
const editClockPattern = "%s-edit"
// Definition hold the details defining one specialization of an Entity.
type Definition struct {
// the name of the entity (bug, pull-request, ...)
typename string
// the namespace in git (bugs, prs, ...)
namespace string
// a function decoding a JSON message into an Operation
operationUnmarshaler func(author identity.Interface, raw json.RawMessage) (Operation, error)
// a function loading an identity.Identity from its Id
identityResolver identity.Resolver
// the expected format version number, that can be used for data migration/upgrade
formatVersion uint
}
// Entity is a data structure stored in a chain of git objects, supporting actions like Push, Pull and Merge.
type Entity struct {
Definition
// operations that are already stored in the repository
ops []Operation
// operations not yet stored in the repository
staging []Operation
// TODO: add here createTime and editTime
// // TODO: doesn't seems to actually be useful over the topological sort ? Timestamp can be generated from graph depth
// // TODO: maybe EditTime is better because it could spread ops in consecutive groups on the logical timeline --> avoid interleaving
// packClock lamport.Clock
lastCommit repository.Hash
}
// New create an empty Entity
func New(definition Definition) *Entity {
return &Entity{
Definition: definition,
// packClock: lamport.NewMemClock(),
}
}
// Read will read and decode a stored local Entity from a repository
func Read(def Definition, repo repository.ClockedRepo, id entity.Id) (*Entity, error) {
if err := id.Validate(); err != nil {
return nil, errors.Wrap(err, "invalid id")
}
ref := fmt.Sprintf("refs/%s/%s", def.namespace, id.String())
return read(def, repo, ref)
}
// readRemote will read and decode a stored remote Entity from a repository
func readRemote(def Definition, repo repository.ClockedRepo, remote string, id entity.Id) (*Entity, error) {
if err := id.Validate(); err != nil {
return nil, errors.Wrap(err, "invalid id")
}
ref := fmt.Sprintf("refs/remotes/%s/%s/%s", def.namespace, remote, id.String())
return read(def, repo, ref)
}
// read fetch from git and decode an Entity at an arbitrary git reference.
func read(def Definition, repo repository.ClockedRepo, ref string) (*Entity, error) {
rootHash, err := repo.ResolveRef(ref)
if err != nil {
return nil, err
}
// Perform a depth-first search to get a topological order of the DAG where we discover the
// parents commit and go back in time up to the chronological root
stack := make([]repository.Hash, 0, 32)
visited := make(map[repository.Hash]struct{})
DFSOrder := make([]repository.Commit, 0, 32)
stack = append(stack, rootHash)
for len(stack) > 0 {
// pop
hash := stack[len(stack)-1]
stack = stack[:len(stack)-1]
if _, ok := visited[hash]; ok {
continue
}
// mark as visited
visited[hash] = struct{}{}
commit, err := repo.ReadCommit(hash)
if err != nil {
return nil, err
}
DFSOrder = append(DFSOrder, commit)
for _, parent := range commit.Parents {
stack = append(stack, parent)
}
}
// Now, we can reverse this topological order and read the commits in an order where
// we are sure to have read all the chronological ancestors when we read a commit.
// Next step is to:
// 1) read the operationPacks
// 2) make sure that the clocks causality respect the DAG topology.
oppMap := make(map[repository.Hash]*operationPack)
var opsCount int
// var packClock = lamport.NewMemClock()
for i := len(DFSOrder) - 1; i >= 0; i-- {
commit := DFSOrder[i]
isFirstCommit := i == len(DFSOrder)-1
isMerge := len(commit.Parents) > 1
// Verify DAG structure: single chronological root, so only the root
// can have no parents. Said otherwise, the DAG need to have exactly
// one leaf.
if !isFirstCommit && len(commit.Parents) == 0 {
return nil, fmt.Errorf("multiple leafs in the entity DAG")
}
opp, err := readOperationPack(def, repo, commit)
if err != nil {
return nil, err
}
err = opp.Validate()
if err != nil {
return nil, err
}
// Check that the create lamport clock is set (not checked in Validate() as it's optional)
if isFirstCommit && opp.CreateTime <= 0 {
return nil, fmt.Errorf("creation lamport time not set")
}
// make sure that the lamport clocks causality match the DAG topology
for _, parentHash := range commit.Parents {
parentPack, ok := oppMap[parentHash]
if !ok {
panic("DFS failed")
}
if parentPack.EditTime >= opp.EditTime {
return nil, fmt.Errorf("lamport clock ordering doesn't match the DAG")
}
// to avoid an attack where clocks are pushed toward the uint64 rollover, make sure
// that the clocks don't jump too far in the future
// we ignore merge commits here to allow merging after a loooong time without breaking anything,
// as long as there is one valid chain of small hops, it's fine.
if !isMerge && opp.EditTime-parentPack.EditTime > 1_000_000 {
return nil, fmt.Errorf("lamport clock jumping too far in the future, likely an attack")
}
// TODO: PackTime is not checked
}
oppMap[commit.Hash] = opp
opsCount += len(opp.Operations)
}
// The clocks are fine, we witness them
for _, opp := range oppMap {
err = repo.Witness(fmt.Sprintf(creationClockPattern, def.namespace), opp.CreateTime)
if err != nil {
return nil, err
}
err = repo.Witness(fmt.Sprintf(editClockPattern, def.namespace), opp.EditTime)
if err != nil {
return nil, err
}
// err = packClock.Witness(opp.PackTime)
// if err != nil {
// return nil, err
// }
}
// Now that we know that the topological order and clocks are fine, we order the operationPacks
// based on the logical clocks, entirely ignoring the DAG topology
oppSlice := make([]*operationPack, 0, len(oppMap))
for _, pack := range oppMap {
oppSlice = append(oppSlice, pack)
}
sort.Slice(oppSlice, func(i, j int) bool {
// Primary ordering with the dedicated "pack" Lamport time that encode causality
// within the entity
// if oppSlice[i].PackTime != oppSlice[j].PackTime {
// return oppSlice[i].PackTime < oppSlice[i].PackTime
// }
// We have equal PackTime, which means we had a concurrent edition. We can't tell which exactly
// came first. As a secondary arbitrary ordering, we can use the EditTime. It's unlikely to be
// enough but it can give us an edge to approach what really happened.
if oppSlice[i].EditTime != oppSlice[j].EditTime {
return oppSlice[i].EditTime < oppSlice[j].EditTime
}
// Well, what now? We still need a total ordering and the most stable possible.
// As a last resort, we can order based on a hash of the serialized Operations in the
// operationPack. It doesn't carry much meaning but it's unbiased and hard to abuse.
// This is a lexicographic ordering on the stringified ID.
return oppSlice[i].Id() < oppSlice[j].Id()
})
// Now that we ordered the operationPacks, we have the order of the Operations
ops := make([]Operation, 0, opsCount)
for _, pack := range oppSlice {
for _, operation := range pack.Operations {
ops = append(ops, operation)
}
}
return &Entity{
Definition: def,
ops: ops,
// packClock: packClock,
lastCommit: rootHash,
}, nil
}
type StreamedEntity struct {
Entity *Entity
Err error
}
// ReadAll read and parse all local Entity
func ReadAll(def Definition, repo repository.ClockedRepo) <-chan StreamedEntity {
out := make(chan StreamedEntity)
go func() {
defer close(out)
refPrefix := fmt.Sprintf("refs/%s/", def.namespace)
refs, err := repo.ListRefs(refPrefix)
if err != nil {
out <- StreamedEntity{Err: err}
return
}
for _, ref := range refs {
e, err := read(def, repo, ref)
if err != nil {
out <- StreamedEntity{Err: err}
return
}
out <- StreamedEntity{Entity: e}
}
}()
return out
}
// Id return the Entity identifier
func (e *Entity) Id() entity.Id {
// id is the id of the first operation
return e.FirstOp().Id()
}
// Validate check if the Entity data is valid
func (e *Entity) Validate() error {
// non-empty
if len(e.ops) == 0 && len(e.staging) == 0 {
return fmt.Errorf("entity has no operations")
}
// check if each operations are valid
for _, op := range e.ops {
if err := op.Validate(); err != nil {
return err
}
}
// check if staging is valid if needed
for _, op := range e.staging {
if err := op.Validate(); err != nil {
return err
}
}
// Check that there is no colliding operation's ID
ids := make(map[entity.Id]struct{})
for _, op := range e.Operations() {
if _, ok := ids[op.Id()]; ok {
return fmt.Errorf("id collision: %s", op.Id())
}
ids[op.Id()] = struct{}{}
}
return nil
}
// Operations return the ordered operations
func (e *Entity) Operations() []Operation {
return append(e.ops, e.staging...)
}
// FirstOp lookup for the very first operation of the Entity
func (e *Entity) FirstOp() Operation {
for _, op := range e.ops {
return op
}
for _, op := range e.staging {
return op
}
return nil
}
// LastOp lookup for the very last operation of the Entity
func (e *Entity) LastOp() Operation {
if len(e.staging) > 0 {
return e.staging[len(e.staging)-1]
}
if len(e.ops) > 0 {
return e.ops[len(e.ops)-1]
}
return nil
}
// Append add a new Operation to the Entity
func (e *Entity) Append(op Operation) {
e.staging = append(e.staging, op)
}
// NeedCommit indicate if the in-memory state changed and need to be commit in the repository
func (e *Entity) NeedCommit() bool {
return len(e.staging) > 0
}
// CommitAdNeeded execute a Commit only if necessary. This function is useful to avoid getting an error if the Entity
// is already in sync with the repository.
func (e *Entity) CommitAdNeeded(repo repository.ClockedRepo) error {
if e.NeedCommit() {
return e.Commit(repo)
}
return nil
}
// Commit write the appended operations in the repository
func (e *Entity) Commit(repo repository.ClockedRepo) error {
if !e.NeedCommit() {
return fmt.Errorf("can't commit an entity with no pending operation")
}
if err := e.Validate(); err != nil {
return errors.Wrapf(err, "can't commit a %s with invalid data", e.Definition.typename)
}
var author identity.Interface
for _, op := range e.staging {
if author != nil && op.Author() != author {
return fmt.Errorf("operations with different author")
}
author = op.Author()
}
// increment the various clocks for this new operationPack
// packTime, err := e.packClock.Increment()
// if err != nil {
// return err
// }
editTime, err := repo.Increment(fmt.Sprintf(editClockPattern, e.namespace))
if err != nil {
return err
}
var creationTime lamport.Time
if e.lastCommit == "" {
creationTime, err = repo.Increment(fmt.Sprintf(creationClockPattern, e.namespace))
if err != nil {
return err
}
}
opp := &operationPack{
Author: author,
Operations: e.staging,
CreateTime: creationTime,
EditTime: editTime,
// PackTime: packTime,
}
var commitHash repository.Hash
if e.lastCommit == "" {
commitHash, err = opp.Write(e.Definition, repo)
} else {
commitHash, err = opp.Write(e.Definition, repo, e.lastCommit)
}
if err != nil {
return err
}
e.lastCommit = commitHash
e.ops = append(e.ops, e.staging...)
e.staging = nil
// Create or update the Git reference for this entity
// When pushing later, the remote will ensure that this ref update
// is fast-forward, that is no data has been overwritten.
ref := fmt.Sprintf(refsPattern, e.namespace, e.Id().String())
return repo.UpdateRef(ref, commitHash)
}