1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
# Bugs Everywhere, a distributed bugtracker
# Copyright (C) 2008-2011 Chris Ball <cjb@laptop.org>
# Gianluca Montecchi <gian@grys.it>
# W. Trevor King <wking@drexel.edu>
#
# This file is part of Bugs Everywhere.
#
# Bugs Everywhere is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation, either version 2 of the License, or (at your
# option) any later version.
#
# Bugs Everywhere is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with Bugs Everywhere. If not, see <http://www.gnu.org/licenses/>.
"""Define :class:`Tree`, a traversable tree structure.
"""
import libbe
if libbe.TESTING == True:
import doctest
class Tree(list):
"""A traversable tree structure.
Examples
--------
Construct::
+-b---d-g
a-+ +-e
+-c-+-f-h-i
with
>>> i = Tree(); i.n = "i"
>>> h = Tree([i]); h.n = "h"
>>> f = Tree([h]); f.n = "f"
>>> e = Tree(); e.n = "e"
>>> c = Tree([f,e]); c.n = "c"
>>> g = Tree(); g.n = "g"
>>> d = Tree([g]); d.n = "d"
>>> b = Tree([d]); b.n = "b"
>>> a = Tree(); a.n = "a"
>>> a.append(c)
>>> a.append(b)
Get the longest branch length with
>>> a.branch_len()
5
Sort the tree recursively. Here we sort longest branch length
first.
>>> a.sort(key=lambda node : -node.branch_len())
>>> "".join([node.n for node in a.traverse()])
'acfhiebdg'
And here we sort shortest branch length first.
>>> a.sort(key=lambda node : node.branch_len())
>>> "".join([node.n for node in a.traverse()])
'abdgcefhi'
We can also do breadth-first traverses.
>>> "".join([node.n for node in a.traverse(depth_first=False)])
'abcdefghi'
Serialize the tree with depth marking branches.
>>> for depth,node in a.thread():
... print "%*s" % (2*depth+1, node.n)
a
b
d
g
c
e
f
h
i
Flattening the thread disables depth increases except at
branch splits.
>>> for depth,node in a.thread(flatten=True):
... print "%*s" % (2*depth+1, node.n)
a
b
d
g
c
e
f
h
i
We can also check if a node is contained in a tree.
>>> a.has_descendant(g)
True
>>> c.has_descendant(g)
False
>>> a.has_descendant(a)
False
>>> a.has_descendant(a, match_self=True)
True
"""
def __cmp__(self, other):
return cmp(id(self), id(other))
def __eq__(self, other):
return self.__cmp__(other) == 0
def __ne__(self, other):
return self.__cmp__(other) != 0
def branch_len(self):
"""Return the largest number of nodes from root to leaf (inclusive).
For the tree::
+-b---d-g
a-+ +-e
+-c-+-f-h-i
this method returns 5.
Notes
-----
Exhaustive search every time == *slow*.
Use only on small trees, or reimplement by overriding
child-addition methods to allow accurate caching.
"""
if len(self) == 0:
return 1
else:
return 1 + max([child.branch_len() for child in self])
def sort(self, *args, **kwargs):
"""Sort the tree recursively.
This method extends :meth:`list.sort` to Trees.
Notes
-----
This method can be slow, e.g. on a :meth:`branch_len` sort,
since a node at depth `N` from the root has it's
:meth:`branch_len` method called `N` times.
"""
list.sort(self, *args, **kwargs)
for child in self:
child.sort(*args, **kwargs)
def traverse(self, depth_first=True):
"""Generate all the nodes in a tree, starting with the root node.
Parameters
----------
depth_first : bool
Depth first by default, but you can set `depth_first` to
`False` for breadth first ordering. Siblings are returned
in the order they are stored, so you might want to
:meth:`sort` your tree first.
"""
if depth_first == True:
yield self
for child in self:
for descendant in child.traverse():
yield descendant
else: # breadth first, Wikipedia algorithm
# http://en.wikipedia.org/wiki/Breadth-first_search
queue = [self]
while len(queue) > 0:
node = queue.pop(0)
yield node
queue.extend(node)
def thread(self, flatten=False):
"""Generate a (depth, node) tuple for every node in the tree.
When `flatten` is `False`, the depth of any node is one
greater than the depth of its parent. That way the
inheritance is explicit, but you can end up with highly
indented threads.
When `flatten` is `True`, the depth of any node is only
greater than the depth of its parent when there is a branch,
and the node is not the last child. This can lead to ancestry
ambiguity, but keeps the total indentation down. For example::
+-b +-b-c
a-+-c and a-+
+-d-e-f +-d-e-f
would both produce (after sorting by :meth:`branch_len`)::
(0, a)
(1, b)
(1, c)
(0, d)
(0, e)
(0, f)
"""
stack = [] # ancestry of the current node
if flatten == True:
depthDict = {}
for node in self.traverse(depth_first=True):
while len(stack) > 0 \
and id(node) not in [id(c) for c in stack[-1]]:
stack.pop(-1)
if flatten == False:
depth = len(stack)
else:
if len(stack) == 0:
depth = 0
else:
parent = stack[-1]
depth = depthDict[id(parent)]
if len(parent) > 1 and node != parent[-1]:
depth += 1
depthDict[id(node)] = depth
yield (depth,node)
stack.append(node)
def has_descendant(self, descendant, depth_first=True, match_self=False):
"""Check if a node is contained in a tree.
Parameters
----------
descendant : Tree
The potential descendant.
depth_first : bool
The search order. Set this if you feel depth/breadth would
be a faster search.
match_self : bool
Set to `True` for::
x.has_descendant(x, match_self=True) -> True
"""
if descendant == self:
return match_self
for d in self.traverse(depth_first):
if descendant == d:
return True
return False
if libbe.TESTING == True:
suite = doctest.DocTestSuite()
|